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STATEMENT OF FOCUS

The Wisconsin Research and Development Center for Cognitive Learning
focuses on contributing to a better understanding of cognitive learning
by children and youth and to the improvement of related educational prac-
tices. The strategy for research and development is comprehensive. It
includes basic research to generate new knowledge about the conditions
and processes of learning and about the processes of instruction, and
the subsequent development of research-based instructional materials,
many of which are designed for use by teachers and others for use by
students. These materials are tested and refined in school settings.
Throughout these operations behavioral scientists, curriculum experts,
academic scholars, and school people interact, insuring that the results
of Center activities are based soundly on knowledge of subject matter
and cognitive learning and that they are applied to the improvement of
educational practice.

This Technical Report is from Phase 2 of the Project on Prototypic
Instructional Systems in Elementary Mathematics in Program 2. General
objectives of the Program are to establish rationale and strategy for
developing instructional systems, to identify sequences of concepts and
cognitive skills, to develop assessment procedures for those concepts
and skills, to identify or develop instructional materials associated
with the concepts and cognitive skills, and to generate new knowledge
about instructional procedures. Contributing to the Program objectives,
the Mathematics Project, Phase 1, is developing and testing a televised
course in arithmetic for Grades 1-6 which provides not only a complete
program of instruction for the pupils but also inservice training for
teachers. Phase 2 has a long-term goal of providing an individually
guided instructional program in elementary mathematics. Preliminary
activities include identifying instructional objectives, student
activities, teacher activities materials, and assessment procedures
for integration into a total mathematics curriculum. The third
phase focuses on the development of a computer system for managing
individually guided instruction in mathematics and on a later ex-
tension of the system's applicability.

iii



ACKNOWLEDGEMENTS

I wish to express my sincere thanks and gratitude to Professor

Thomas A. Romberg for his help, encouragement, and patience during

my years of graduate study. I also wish to thank Professor John G.
'4.

Harvey for his penetrating analysis of many of the problems encoun-

tered during the course of this study.

In addition, my sincere appreciation goes to Professors Gary

A. Davis, J. Marshall Osborn, and J. Fred Weaver for serving on

my committee.

The services of many persons were required to complete this

study. Sincere thanks are extended to the following: Mrs. Carolyn

Gornowicz who taught the experimental unit; all of the members of

the University of Wisconsin's Research and Development Center for

Cognitive Learning who have assisted in carrying out various phases

of this study, especially Julie Erjavec for her last-minute dupli-

cation of urgently needed materials; Mr. Charles Tucker of Poynette

Elementary School, Mr. Gerald Johnson of Huegel Elementary School,

and Mr. Ronald Hering of Lake Mills Middle School for their coop-

eration in helping to conduct the studies in their schools; and

finally, special thanks go to the students who so willingly

participated as subjects.

iv



TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENTS iv

LIST OF TABLES viii

LIST OF FIGURES

ABSTRACT xiii

CHAPTER

I. INTRODUCTION AND STATEMENT OF THE PROBLEM 1

BACKGROUND OF THE PROBLEM 1

RATIONALE FOR THE STUDY 17

HOW THE UNIT WAS DEVELOPED 17

FEASIBILITY 19

THE PURPOSE OF THE STUDY 19

SIGNIFICANCE OF THE STUDY 21

II. RELATED RESEARCH 22

INTRODUCTION 22

TRAINING IN LOGIC 22

STATUS STUDIES 27

DISCUSSION 33

SUMMARY 37

DEVELOPMENT OF THE UNIT 38

MATHEMATICAL ANALYSIS (Step 1) 38

Selection of the Theorems 38

Outline of the Unit 41

Action Words 47

Task Analysis 48

INSTRUCTIONAL ANALYSIS (Step 2) 66

FORMATIVE PILOT STUDY # 1 (Step 3) 71

MATHEMATICAL REANALYSIS # 1 (Step 4) . . . 74

INSTRUCTIONAL REANALYSIS # 1 (Step 5) . . . 75

FORMATIVE PILOT STUDY # 2 (Step 6) 81

MATHEMATICAL REANALYSIS # 2 (Step 7) . . . 85

INSTRUCTIONAL REANALYSIS # 2 (Step 8)'. . . 86

FORMATIVE PILOT STUDY # 3 (Step 9) 92



TABLE OF CONTENTS (CONTINUED)

CHAPTER

III. Continued

MECHANISM (Instructional Program).
Content outline
Lesson plans
Procedures
Feasibility

Mastery test
Pretest-posttest

PAGE

93

93

95

96

97

98

98
INPUT 99

The teacher 99

The students 100
Materials 103
Other factors 104

FEEDBACK (Evaluation) 104
OUTPUT 105
RESOURCES 106
TEACHING THE UNIT 106

IV. RESULTS 110

PREREQUISITES 110
Distributive law 110
Axiom 1 111

Closure properties 112
Substitution 112
Definition of divides 113

Law of Contradiction 114
Prime numbers 114
Inductive reasoning 115

PROOF 116
SUMMARY OF THE PRETEST-POSTTEST RESULTS . . 117
ANALYSIS OF VARIANCE 119

THE RELIABILITY AND VALIDITY OF THE
PRETEST-POSTTEST .. 120

OTHER BEHAVIORS 123
The meanings of the theorems 123
Understanding the proofs 123

CONCLUDING REMARKS 124

V. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR
FURTHER STUDY 125

SUMMARY 125

LIMITATIONS OF THE STUDY 127

vi



TABLE OF CONTENTS (CONTINUED)

CHAPTER

V. Continued

CONCLUSIONS
Conclusions related to
Conclusions related to

of the unit
RECOMMENDATIONS FOR FURTHER

CONCLUDING REMARKS

PAGE

127

the experiment . 127

the development

STUDY

132

135

137

APPENDICES

A. JOURNAL FOR FIRST FORMATIVE PILOT STUDY 138

B. JOURNAL FOR SECOND FORMATIVE PILOT STUDY . . . 143

C. LESSON PLANS AND JOURNAL FOR THIRD FORMATIVE

STUDY 147

D. RESULTS OF LESSON MASTERY TESTS 363

E. PRETEST-POSTTEST 373

F. SUMMARY OF DATA ON STUDENTS IN THE EXPERIMENT . 379

G. CERTIFICATE . . . . 383

REFERENCES 387

vii



LIST OF TABLES

TABLE PAGE

1. Results of the Pretest 103

2. Distributive law 111

3. Axiom 1 112

4. Closure 113

5. Substitution 113

6. Definition of Divides 114

7. Law of Contradiction 114

8. Prime Numbers 115

9. Inductive Reasoning 115

10. Proofs 117

11. Summary of the Pretest-Posttest Results 118

12. Hoyt Reliability Coefficients 123

A. Identifying Instances of the distributive law . . . . 365

B. Applying the distributive law 365

C. Stating divisibility facts 366

D. Writing equations 366

E. Substitution 366

F. Identifying instances of the distributive law 367

G. Applying the distributive law 367

H. Substitution 367

I. Stating divisibility facts . .... , ....... 367

J. Writing equations 368

K. Application of Theorem 1 368

viii



LIST OF TABLES (CONTINUED)

TABLE PAGE

L. Giving numerical examples r, 368

M. Applying Theorem 2 369

N. Giving numerical examples 369

O. Forming opposites 370

P. Law of Contradiction 370

Q. Law of the Excluded Middle 370

R. Giving numerical examples 371

S. Applying Theorem 4 371

T. Interpreting use of 3 dots 371

U. Summary of Data on the Experimental and
Control Groups 381

ix



LIST OF FIGURES

FIGURE PAGE

1. Steps in Developing an Instructional System 20

2. Development and Testing of the Unit on Proof . . . 39

3. Partitioning the Circle into Regions ..... . . 44

4. Partitioning the Circle into 30 Regions .... . . 45

5. A First Approximation of a Task Analysis
for "Proving a Theorem" 55

6. A New Task Analysis Model Containing
Other Hierarchies 56

7. A Three-Dimensional Model for Task Analyzing
the Behaviors Involved in Proving
Mathematical Theorems 58

8. Proof and Task Analysis for Theorem 1 61

9. Proof and Task Analysis for Theorem 2 62

10. Proof and Task Analysis for Theorem 3 63

11. Proof ar,d Task Analysis for Theorem 4 ..... . . 64

12. Proof and Task Analysis for Theorem 5 65

13. Proof and Task Analysis for Theorem 6 67

14. Revised Task Analysis for Theorem 6 72

15. A Task Analysis for Applying the Law
of Contradiction 76

16. Second Revision of Task Analysis for Theorem 6 . . . 77

17. Proof and Task Analysis for Criterion for
Divisibility by 3 83

18. Proof and Task Analysis for Criterion for
Divisibility by 9 84

X



LIST OF FIGURES (CONTINUED)

FIGURE PAGE

19. Revised Proof and Task Analysis for Theorem 4. . . . 87

20. Revised Proof and Task Analysis for Theorem 5. . . . 88

21. Instructional System 94

xi



ABSTRACT

To test the feasibility of presenting proof materials to

capable Sixth-Grade students, a unit on mathematical proof was

using an iterative procedure. Formative evaluation procedures

to improve various components of the unit. A sequence of six

was selected, terminating with "Given any set of prime numbers

always another prime number."
Action words were used to write the objectives of the unit in terms

of terminal student behaviors, and these terminal behaviors were task

analyzed into subordinate behaviors. A new three-dimensional model

was developed to task analyze the higher-order cognitive tasks involved

in proving mathematical theorems. An instructional analysis performed

after the mathematical analysis was based on Bruner's hypothesis that

"any subject can be taught effectively in some intellectually honest

form to any child at any stage of development." The basic approach was

to recast the mathematical content into a form which wal consistent with

the cognitive structures of Sixth-Grade children. Hence, pedagogical

and psychological considerations outweighted mathematical ones.

A formative pilot study was conducted with six Sixth-Grade students.

The mathematical and instructional components were then reexamined and a

second formative pilot study was conducted with seven students. Proofs

of several theorems were simplified and the instructional procedures.

were modified. Cartoon stories were used to introduce new concepts into

the unit, and several classroom activities were centered around a desk

computer.
From ten Sixth-Grade students, a Control Group was selected by

matching procedures and a Nonequivalent Control Group design was used to

test the unit. A certified elementary school teacher with a strong

background in mathematics taught the unit to the Experimental Group.

Bloom's concept of mastery learning was used to bring each student up to

pre-established criterion levels of performance.

On the posttest, the Experimental Group showed mastery of all

prerequisite skills and all proofs and showed significant differences

from the Control Group (a <0.0001).
Thus, the iterative developmental procedures employed in developing

the unit were highly successful; Sixth-Grade students are able to

understand and prove the mathematical proofs as presented in the unit; and

Bloom's concept of mastery learning is a successful operational procedure

for the mathematics classroom. Because the teacher of the Experimental

Class encountered difficulties in teaching the unit, it is probable that

the task of teaching proof is well beyond the capabilities of the

typical elementary school teacher.

college-
developed
were used
theorems
, there is



Chapter I

INTRODUCTION AND STATEMENT OF THE PROBLEM

BACKGROUND OF THE PROBLEM

Proof and deductive reasoning are at the very heart of modern

mathematics. The purpose of this study was to develop a unit of in-

struction on mathematical proof and to use this unit to investigate the

feasibility of presenting proof materials to sixth -grad students.

The modern conception of mathematics is that it is a creation of

man's intellect: undefined terms, definitions, fundamental postulates,

and a set of logical principles give a mathematical system its distinc-

tive structure. Hence, one might create a new system from an old

system by altering a few postulates. Bell (1940 p. 305) describes

this conception of mathematics as follows:

In precisely the same way that a novelist invents characters,
dialogues, and situations of which he is both author and
master, the mathematician devises at will the postulates
upon which he bases his mathematical systems. Both the nove-

list and the mathematician may be conditioned by their en-
vironments in the choice and treatment of their material; but
neither is compelled by any extTa-human, eternal necessity
to create certain characters or to invent certain systems.

The modern point of view in mathematics has its origin in the works

of Gauss, Bolyai, Lobachevski, and Riemann. During the last century,

these mathematicians challenged over two thousand years of tradition by

creating consistent geometric systems which contradicted a fundamental

postulate of Euclidean geometry. Further refinements of these systems

1
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by Pasch, Peario, and Hilbert established the purely hypothetico-

deductive nature of geometry.

Euclid had recognized postulates as being "self-evident truths"

about the real world. The new method views postulates merely as

"assumptions." The matheMatician is not necessarily concerned with the

truth of falsity of the postulates; he is concerned primarily with

their consistency. Postulates are creations of the mathematician's

mind and are useful in deriving other mathematical statements.

A clear distinction is also made between that which is defined and

that which must remain undefined. Euclid had attempted to define all

of his terms. Modern mathematicians realize that some terms must re-

main undefined to avoid circularity of definition. From the modern

point of view, Euclid's geometry is inadequate.

In spite of the fact that the modern conception of mathematics

was developed in the last century, the school mathematics curriculum

was slow in reflecting this viewpoint. As early as 1901, Russell (1901,

p. 100) commented upon the fact that Euclid's geometry was still being

taught in England: "... it is nothing less than a scandal that he should

still be taught to boys in England." In 1954, MacLane (1954, p. 66) wrote:

...the lively modern development of mathematics has had no im-

pact on the content or on the presentation of secondary-school

mathematics. Algebra and geometry, as covered in schools, con-

sist exclusively of ideas already well known two hundred years

ago---many of them two thousand years ago. No matter how much

better these particular ideas are taught to more and more

pupils, their presentation leaves mathematics in a state far

more antiquarian than that of any other part of the curriculum.

The pupils can conclude only that there is no such thing as a

new mathematical idea.

At the very time that MacLane was writing these remarks, efforts

were already underway to correct some of the deficiencies of which he

wrote. The first major shift away from the traditional program had been
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initiated by the University of Illinois Committee of School Mathematics

(UICSM) under the direction of Max Beberman. In 1952, this group of

mathematicians and teachers set out to develop materials of instruction

for secondary school students and to train secondary school teachers in

their use, so as to produce enthusiastic students who understand mathe-

matics. Two basic principles guided the program: discovery and pre-

cision of language. It was Bebermanys belief (1964) that a student will

come to understand mathematics when both his textbook and his teacher

use unambiguous language and when he is permitted to discover generali-

zations by himself.

Eleven units were written with the structure of mathematics upper-

most in mind. These units comprise the UICSM program entitled High Scbool

Mathematics. Deductive proof is introduced in the first unit in a very

informal way with the derivation of specific numerical statements. For

instance, the field properties are used to illustrate easy ways to per-

form computations (1960, p. 57):

987 x 593 + 593 x 13 = 593 x (987 + 13)

= 593 x 1000

= 593,000

Unit 2 discusses generalizations, counter-examples, and proof. The

following is a typical proof (1960, p. 35):

For each K, 3K + (9K - 2) + 12K - 2.

3K + (9K - 2) = 3K + (9K + -2) [ps]

= 3K + 9K + -2 [apa]

= (3 + 9) K + -2) [dpma]

= 12K + -2 [3 + 9 = 12]

= 12K - 2 [ps]
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(ps means "the principle of subtraction," apa means "the associative

principle for addition," dpma means "the distributive property for

multiplication over addition"). As an example of the exercises, the

students are asked to prove (1960, p. 61):

VxVaVb Vc, ax + bx + cx = (a + b + c) x.

Unit 3 contains proofs involving inequalities (1960, p. 101):

V'xVyfz, ("X i-z>y+z if and only ifx> y).

Unit 4 contains proofs on the irrationality of various square roots as

well as proofs on the sum and product of odd and even integers. Unit 5

contains set algebra proofs, Unit 6 devotes a section to logic, and Unit 7

is on mathematical induction.

The UICSM material introduces the concept of mathematical proof at

the ninth-grade level and continues to develop it throughout the high

school years. The logical development of the real number system is the

vehicle by which the concept of proof is developed. In summary, the

UICSM materials present a very thorough treatment of deduction and proof.

The UICSM program has demonstrated the feasibility of presenting

a rigorous deductive approach to mathematics to high school students.

The units have served-as a Platonic blueprint from which has emanated

an entire revolution in school mathematics. Many programs followed the

lead of the UICSM. In commenting upon the first few programs, Butler

and Wren (1960, p.81) remarked:

Whatever the final results may be, it is safe to say that

some of the immediate effects will be a greatly increased

emphasis on structure, a reconsideration and refinement

of definitions, a clearer attention to the deductive process

In 1959, the Commission On Mathematics of the College Entrance

Board (CEEB) published a booklet entitled Program for College Preparatory

Mathematics. Because it can and does include in its testing program any
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topics it considers important, this group has been very influential.

Whereas the UICSM demonstrated the feasibility of presenting proof to

high school students, the CEEB was the first highly authoritative group

to stress the desirability of increasing the amount of deductive rigor

in the school curriculum. As concerns reasoning and proof, this group

has recommended that deductive reasoning may be employed in courses other

than geometry (1959a, p. 22):

One way to foster an emphasis upon understanding and

meaning in the teaching bf algebra is through the in-
troduction of instruction in deductive reasoning. The

Commission is firmly of the opinion that deductive
reasoning should be taught in all courses in school

mathematics and not in geometry courses alone.

The CEEB report makes specific recommendations for the high school

curriculum. For ninth-grade algebra, the Commission suggested the follow-

ing uses of deduction:

1. Simple theorems on odd and even integers and the

property of integers.

2. Theorem: VT is irrational.

The theorems in (1) are rather simple and involve the direct appli-

cations of the field axioms. By comparison, the proof thatik- is

irrational is more difficult. A rigorcus proof would require a knowledge

of the Law of the Excluded Middle, the Law of Contradiction, as well as

the establishment of some prerequisite theorem, e.g., the prime factors

of a square occur in pairs. The Commission, however, probably had a

more intuitive proof in mind, for it uses the phrase "informal deduction"

to describe the type of proofs to be included at this level.

Although the Commission felt that algebra should be taught so as to

give sound training in deductive methods, it was of the opinion that

geometry would continue to be the subject in which the student would
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receive the most satisfactory introduction to thinking in terms of

postulates, proofs, undefined terms and definitions. Appendix 11,

"A Note on Deductive Reasoning," includes the following features of

deductive reasoning which were to be emphasized (1959b, p. 112):

1. The nature of definition.
2. The impossibility of defining all technical terms.
3. The nature of proof.
4. The impossibility of proving all statements.

A suggested theme for the Grade 10 course was "Geometry and Deduc-

tive Reasoning". It includes the development of the postulational nature

of geometry as well as the suggestion that a miniature deductive system

proving certain properties about abstract objects be taught. Deduction,

and proof are not objects of study in Grades 11 and 12, but they are

used extensively.

As a whole, the Commission envisioned a secondary school curriculum

which placed a greater emphasis upon proof than did the traditional pro-

gram, yet which was somewhat less rigorous than the UICSM program.

In discussing the reasons for the increased emphasis upon deduction,

the Commission disagrees with a reason which has often been advanced for

teaching deduction (1959a, p. 23):

Not all reasoning is syllogistic or deductive. Training in
mathematics based on deductive logic does not necessarily
lead to an increased ability to argue logically in situations
where insufficient data exist, and where strong emotions are
present. It is a disservice to the student and to mathematics
for geometry to be presented as though its study would enable
a student to solve a substantial number of his life problems
by syllogistic and deductive reasoning.

Deductive methods are taught primarily to enable the pupil to
learn mathematics. Mathematics, and consequently deductive
methods, can be applied to life only in those life situations
that are capable of accurate transformation into mathematical

.-i

41
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models. These situations, though of tremendous importance,

are far from frequent in the everyday life of high school

students.

Deduction is thus defended on mathematical rather than on practical

grounds. Reasoning and proof are necessary and integral components of

a healthy mathematics program, and this is sufficient reason for their

inclusion in the curriculum.

The growing importance which many mathematicians attach to axiomatics

in the secondary schools is vividly illustrated by the pamphlet entitled

The Role of. Axiomatics and Problem Solving in Mathematics. Allen, Blank,

Buck, Dodes, Gleason, Henkin, Kline, Shanks, Suppes, Vaughn and Young

address themselves to the task of discussing the role of axianatics in the

curriculum. Although Blank and Kline are not so inclined, the others in

this group favor the use of axiomatics. For example, Allen (1966, p.3)

comments:

We believe that the axiomatic method of exposition will

help pupils acquire a deeper understanding of elementary

mathematics and a better appreciation of the nature of

mathematics.

Suppes (1966, p.73) states:

From years of grading mathematical proofs given on

examinations at the university level, I am firmly

convinced ...that the ability o write a coherent

mathematical proof does not develop naturally even

at the most elementary levels and must be a subject

of explicit training.

And Shanks (1966, p. 65) adds:

My major claim for good axiomatics in the classroom

is that students actually thrive on it.

These developments have had a profound effect upon high school

text books, as is described by Allen (1966, p.2):

Most of the algebra texts published in the United

States since 1960 delineate the structure of algebra
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by presenting the properties of an ordered field as

a basis for justifying statements which, in former

years, would have merely been announced as rules for

computation. Some of these books have sections on

logic which give the student an idea of the nature

of proof. A few texts present logic as an integral

part of the course and use it throughout in the proof

of theorems. In some cases, the proofs are short,
informal essays designed to convince the student that

a certain proposition is true. Sometimes proofs are

structured in ledger form, as they are in traditional

geometry texts, with the reasons numbered to corres-

pond to the steps.

Until the late 1950's, most of the concern with the mathematics

curriculum had been focused upon the secondary school program. At th't

time the process of revising the curriculum reached the elementary schools,

With recommendations for a marked increase in deductive procedures at the

secondary school level, a greater emphasis upon rigor and structure was

called for at the elementary school level. Several experimental programs

were started in response to this challenge. Among these were the Syracuse

University-Webster College Madison Project (The Madison Project), The

School Mathematics Study Group (SMSG), and the Greater Cleveland Mathe-

matics Program (GCMP). The role that proof plays varies with each

program, but as a rule, very little attention is given to deductive

procedures.

The Madison Project leans toward inductive procedures and stresses

trial and error discovery, but very few mathematical generalizations are

actually drawn. Mathematical statements are proven intuitively with the

use of repeated illustrations, but deduction is not stressed at the

elementary school level. The concepts of implication and contradiction

are used, but the use of axioms and theorems are not encountered until

algebra.

In describing the curricular objectives of the Madison Project,
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Davis (1965, p. 2) states:

The Project seeks to broaden this curriculum by intro-
ducing, in addition to arithmetic, some of the funda-

mental concepts of algebra (such as variable, function,
the arithmetic of signed numbers, open sentences, axiom,
theorem, and deviations), some fundamental concepts of
coordinate geometry (such as mph of a functions, some
ideas of logic (such as implication), and some work on
the relations of mathematics to physical science.

The SMSG material does very little with proof at the elementary

school level. The second volume of the junior high school textbook

includes some simple proofs, such asli2 is irrational, and the high

school program increases the amount of proof material at each successive

grade level. But at the elementary school level, the only important

proof material is the use of the commutative, associative, and distributive

axioms of operations on integers to show the correctness of the algorithms

of addition, multiplication, etc. For example (1962, p. 96), the follow-

ing is preztented in Book 5:

60 x 70 = (6 x 10) x (7 x 10) (Rename 60 and 70).

= (6 x 7) x (10 x 10) (Use the associative and
commutative propezites).

= 42 x 100 (The product of 6 and 7
is 42; the product of
10 and 10 is 100).

= 4200 (The product of 42 and
100 is 4200).

The Greater Cleveland Program encourages students to reason out the

processes they learn by building the development of basic properties,

but no effort is made to introduce or use formal proof. The objectives

for the upper elementary school is stated as follows (1964, Preface):

There are two parallel objectives of mathematics education
at this level, both of which should be achieved. The first
objective is a clear understanding of the structural inter-
relationships of numbers. This achievement enables pupils
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to develop proficiency in applying numbers to problems.

The second objective is skillful and rapid computation.

These experimental programs are illustrative of the general

trend at the elementary school level: precision of language is

emphasized and an attempt is made to explain why certain rules and

procedures are followed. But proof is, for the most part, omitted.

Experimental programs such as the ones discussed above served as

models for commercial textbooks. As a result, most of the commercially

published textbooks go no further with logic and proof than the ones

discussed above. There is one series, however, which devotes a con-

siderable amount of attention to logic, and that is Sets and Numbers,

authored by Suppes. In each of the Books from Grade 3 to Grade 6, one

chapter is devoted to logic. An intuitive introduction to logical

reasoning begins in Book 3, but there is no explicit use of logic

terminology. "If - then" (1966b, p. 301) and "or" (1966b, p. 305)

statements are used as follows:

if n > 4 then n = 5

n > 4

What is n?

n = 5 or n= 7

n15

What is n?

Book 4 introduces some simple logical terminology, and rules of

inference are introduced in the context of the use of ordinary English.

In some cases the use of ordinary English is supplemented by the use

of mathematical symbols introduced in other parts of the book, as in the

examples above, but special logical symbols, such as A for conjunction
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and V for disjunction, are not used in this series. Book 4 also discuss

conjunctions and disjunctions, atomic and molecular sentences, conditional

sentences, and connectives. The student is given tollendo tollens ex-

ercises, and is asked to identify various types of sentences.

In Book 5, the terms "antecedent", "consequent", "denial of an

atomic sentence", and "premises and conclusions" are presented. Specific

names are given to several reasoning patterns: the "if-then" rule

(ponendo ponens), the "if-then-not" rule (tollendo tollens), and the

"or" rule (tollendo ponens).

Longer reasoning patterns involving three premises and one or two

conclusions are introduced in Book 6, and the student is asked to supply

reasons for each conclusion. For example (1966b, p. 288):

(1) if f = g, then f = h

(2) if f I g, then f - g = 3 P

(3) f # h

(4) f g

(5) f - g = 3

P.

9

This series has several interesting features. First, content

spiralling is much in evidence. Each of the books reviews the concepts

taught in the preceding book, extends the concepts, and then adds new

ones. But although successive chapters on logic fit nicely together,

they are isolated from the remainder of the text. Logic is developed,

but it is not used elsewhere in the book. It is treated as a separate

topic, and the relationship of logic to other aspects of mathematics

is ignored. Not a single mathematical result, for example, is proved

deductively with the logical machinery developed in the chapters on

logic. Even the teacher's manual fails to adequately clarify the role
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which logic plays in mathematics. The Teacher's Edition of Book 4

states that the main purpose of the study of logic is to introduce the

student to a way of thinking that encourages precision (1966b, p. 344):

For a long time the logical structure of any argument
was obscured by the words used in the argument... In
the last century, symbolic logic was developed to solve
this problem. In symbolic logic the sentences are re-
placed by mathematical symbols, so that the whole struc-
ture of the argument stands out clearly.

The series gives the impression that logic is a separate discipline.

That this is not Suppes' intention is clear from the following quote

(1966a, p. 72):

As a part of training in the axiomatic method in school mathe-
matics, I would not advocate an excessive emphasis on logic as
a self-contained discipline...What I do feel is important is
that students be taught in an explicit fashion classical rules
of logical inference, learn how to use these rules in deriving
theorems from given axioms, and come to feel as much at home
with simple principles of inference like rodus ponendo ponens
as they do with elementary algorithms of arithmetic. I hasten
to add that these classical and ubiquitous rules of inference
need not be taught in symbolic form, nor do students need to
be trained to write formal proofs in the sense of mathematical
logic.

Because no attempt is made to prove mathematical results, the

series has little direct relevance to the present study. Yet the logical

content of this series is based upon experimental evidence gathered at

Standford University, and it is encouraging to know that sixth graders

can be expected to use fairly sophisticated reasoning patterns.

In the preceding paragraphs, an attempt has been made to outline the

major developments and trends which have taken place in the past fcv years.

In spite of the fact that the emerging programs were significantly more

rigorous than the traditional programs, the men who attended the

Cambridge Conference on School Mathematics (CCSM) envisioned an even

more rigorous and accelerated mathematics curriculum. In their 1963
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reports, Goals for School Mathematics (The Cambridge Report), the

conferees urged that logic and inference be taught for both practical

and mathematical reasons. From the practical point of view, logic

is held to be essential to a good liberal education. They affirm that

a knowledge of logical principles will help the student correct much

of the slip-shod reasoning he normally employs in everyday life

(1963, p. 9):

Many poor patterns of thought common in ordinary life

may be modified by the study of mathematics...Just a

little experience with logic and inference can do away

with some of the unfortunate reasoning we meet all too

often.

This is almost the identical argument which has been traditionally

advanced in support of including geometry in the high school curriculum,

and it is an argument refuted by the CEEB report mentioned above.

From a mathematical point of view, the following reasons are cited:

(1) to economize on the number of axioms required.

(2) to illustrate the power of concepts in proving more

elaborate statements.

(3) to unify the K - 6 mathematics materials.

(4) to prepare the students for the large dosage of formal

proof which they will encounter in geometry and algebra

in grades 7 and 8.

The Report recommends that proof be taught in the elementary

school (1963, p. 39):

As the child grows, he learns more and more fully what

constitutes a mathematical proof...experience in making

honest proofs can and probably should begin in the ele-

mentary grades, especially in algebraic situations.

The following topics were recommended for inclusion in the ele-

mentary school curriculum:

(1) The vocabulary of elementary logic: true, false, impli-

cation, double implication, contradiction.

(2) Truth tables for simplest connectives.

(3) Modus ponendo ponens and modus tollendo tollens.

(4) Simple uses of mathematical induction.
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5. Preliminary recognition of the roles of axioms and
theorems in relation to the real number system.

6. Simple uses of logical implication or "derivations"
in studying algorithms, or complicated identities, etc.

7. Elements of flow charting.
8. Simple uses of indirect proof, in studying inequalities,

proving iri irrational, and so on.

In all, the Report suggests proving 20 theorems in Grades 4-6 in-,

clueing indirect proofs and proof by mathemati..al induction. It is of

interest to note that the Cambridge Report recommendations represent

a three-year acceleration of the CEEB Report mentioned earlier. Both

suggest proving that Y2 is irrational, but whereas the CEEB has the

ninth grade in mind, the Cambridge group has the sixth grade in mind.

Because of this rapid acceleration, these recommendations might

appear, at first reading, to be extremely over-ambitious. There are,

however, several consideration's which make this proposal a more credible

one. The first is the fact that these are goals for the future. The

curriculum reform which had preceded the Conference had been affected by

many factors, the most serious of which were the scarcity of qualified

elementary school teachers and the rigidity of the existing school

systems. The men attending the Cambridge Conference consciously di-

vorced themselves from such considerations and concentrated upon certain

goals for which they believed our schools should be striving.

Another consideration is the fact that the educational ideas of

Jerome Bruner permeate the report. One of Bruner's central themes is

the belief that "any subject can be taught effectively in some intel-

lectually honest form to any child at any stage of development"

(1960, p. 33). This shall be referred to :s "Bruner's Hypothesis".

If this is a valid educational hypothesis, then proving simple theorems

might well be a legitimate goal for sixth-grade students. According to
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Bruner (1966), the maturing human organism proceeds through three stages

of cognitive development; the enactive, the ikonic and the symbolic.

Knowledge can also be represented in these three basic forms. The

concept of any academic discipline can be successfully taught to children

at any stage of mental development if we can simplify and reformulate

these concepts into terms which match the cognitive structures of the

children. It should, therefore, be possible to present the proofs of

simple theorems to sixth graders in some manner. Varying degrees of

rigor exist and the CCSM concludes that "at the elementary school level

the amount of logical or inductive reasoning that will be appreciated

is uncertain" (1963, p. 15). The CCSM recommends using a spiral method

which proposes that the same concept or theorem be dealt with upon

several occasions in the curriculum, separated by varying intervals of

time. Thus, a highly intuitive proof can be made more rigorous at a

later date.

In light of these considerations, the CCSM recommendations may

represent a workable alternative for the future. The Cambridge Conference

argues that proof should be included in the elementary school curriculum.

Are there reasons to believe that it can be done? There is same indication

in the theory of Jean Piaget that the answer to this question is "yes".

Logic and psychology are independent disciplines: Logic is con-

cerned with the formalization and refinement of internally consistent

systems by means of pure symbolism; psychology, on the other hand, deals

with the mental structures that are actually found in human beings.

These mental structures develop independently of formal training in

logic. Yet human beings do employ logical principles, and there is

some relationship between mental functioning and logic. One of Piaget's
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major concerns has been to determine this relationship. Two basic

steps are involved in this attempt: (1) to construct a psychological

theory of operations in terms of their genesis and structure; and (2)

to examine logical operations and apply these to psychological opera-

tions. To construct his theory Piaget uses the mathematical concept

of a lattice (1953). What concerns us here, however, is that in the

process of developing this theory Piaget analyzes the growth of logical

thinking in children. His description of the adolescent mind can be

summarized as follows:

(1) The ability to cope with both the real and the possible.

(2) The ability to consider the possible as a set of hypotheses.

(3) The ability to form propositions about propositions and to
make various kinds of logical connections between them, such
as implication, conjunction, disjunction, etc.

(4) The ability to isolate all the variables of a problem and to
subject them to a combinatorial analysis.

The investigator believes that possession of these cognitive abili-

ties constitute an adequate readiness for a formal study of mathematical

proof. Hence, if Piaget is correct in his analysis, sixth-grade students

possess the logical operations necessary to begin the study of mathemati-

cal proof, for the sixth-grade student is just entering the formal opera-

tional stage of cognitive development. This is not to say that his de-

scription of the formal operational mind is a readiness barometer; it

clearly is not. The dangers inherent in such a suggestion have been

pointed out by Sullivan (1967). It does suggest to the curriculum de-

veloper, nonetheless, that it might be profitable to experiment with

proofs in the elementary school. Since sixth-graders are in the formal

operational stage of cognitive development, experimentation might prof-

itably be started at the sixth-grade level.



RATIONALE FOR THE STUDY
;.

The rationale for the study is contained in the following facts:

(1) the authoritative recommendations of the Cambridge Report
that proofs of mathematical theorems should be presented

in the elementery school;

(2) the theory of Piaget which suggests that it can be done;
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(3) to the investigator's knowledge a careful study of proof

in the elementary school has not been conducted.

Together they suggest the question, Is it possible to develop

a unit of proof and test the feasibility of presenting proofs to

sixth-grade students? The question is comprised of two parts. First,

how does one develop a unit on proof for use with sixth-grade studens?

And second, what is meant by "feasibility"?

HOW THE UNIT WAS DEVELOPED

Plans were made to develop the unit on proof in accordance with the

curriculum development model constructed by Romberg and DeVault (1967).

The model is comprised of four sequential phases: Analysis, Pilot

Examination, Validation, and Development. This study carried the develop-

ment of the unit on proof through the first two phases of the model.

The first step in the Analysis phase is the mathematical analysis.

The goals and content of the unit must be identified. These goals are

then stated behaviorally in terms of well-defined action words. These

behavioral objectives are then subjected to a task analysis. This

procedure was developed by Gagne/ (1965b) for training persons to perform

complex skills. The basic idea of task analysis is to break a complex

task down into component subtasks and establish a relationship among

them. This relationship should, when possible, indicate the order in

which each subtask is to be learned and the dependencies among the
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subtasks. Learning the subtasks are essential to learning the total

task. If properly constructed, the task analysis should reveal all the

prerequisite skills which are necessary for learning the terminal be-

havior.

Once a task analysis has been completed, an instructional analysis

is undertaken. Here one tries to determine an effective way to teach

each of the objectives contained in the unit. As Gagne (1965a) has

pointed out, the pedagogical tactics should depend upon the type of

learning implied by the content. Learner variables, teacher variables,

stimulus variables and reinforcement variables must all be considered

in an attempt to create a well-planned and effective instructional unit.

The second phase of development is the pilot examination. Each

component of the unit is tried out with an appropriate group of

students. Formative evaluation procedures are used to assess the

effectiveness of each component of the unit.

The results of the pilot are then analyzed. If they are favorable,

one proceeds to the validation phase of the model; if unfavorable, one

must recycle and begin again. The arrows in Figure 1 indicate the

iterative nature of this model. One continues to cycle and recycle

through the analysis and pilot phases of the model until a workable

unit is developed.

In the present study, three pilot studies were conducted before a

satisfactory unit was developed. In conjunction with the third study,

an experiment was conducted. An intact group of students served as the

Experimental Group, and a Control Group was selected by matching

procedures.
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FEASIBILITY

To determine the feasibility of presenting proofs to sixth-grade

students, three basic questions were asked:

(1) Can the students display an understanding of the
meaning of the theorems?

(2) Can the students reproduce the proofs of the theorems?

(3) Can the students display an understanding of the proofs?

Chapter III discusses means which were used to gather data to

answer these questions. For the purpose of this study, the degree of

feasibility will be determined by the extent to which the students are

able to perform these tasks.

THE PURPOSE OF THE STUDY

The study had two main purposes: (1) to demonstrate that the

curriculum development model advocated by Romberg and Devault can be

successfully used to develop a unit on proof for use with sixth-grade

students; and (2) to use this unit to test the feasibility of present-

ing selected proof materials to sixth-grade students.

If the unit on proof meets the criteria of feasibility, the effec-

tiveness of the curriculum de=velopment will be demonstrated.

SIGNIFICANCE OF THE STUDY

Deduction and proof are central to a mature study of mathematics,

yet teachers of mathematics have long bemoaned the fact that high school

and college mathematics students are unable to write coherent mathe-

matical proofs. If proof materials can be developed which are appro-

priate for use with sixth-grade students,then the possibility of pro-

ducing students with better proof writing abilities exists. For, if

sixth graders can learn to prove simple mathematical theorems, a spiral
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ANALYSIS.

Formative: Pilot

Formative Validation
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Re-analysis

Development

PILOT EXAMINATION

VALIDATION

DEVELOPMENT

Summative Evaluation

Figure 1. Steps in Developing an Instructional System
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approach to the mathematics curriculum could be used to reinforce and

expand these skills and understandings. A viable program on proof

could conceivably be developed for the upper elementary and junior

high schools which would produce high school students capable of

writing valid proofs.

The present study was undertaken in ar attempt to gather some

preliminary information of these possibilities.

Chapter III gives a detailed account of how the unit was devel-

oped; nine sequential steps illustrate the formative nature of the

development. The results of the experiment are reported in Chapter

IV, including all of the data which was used to judge the feasibility

of the unit. And finally, Chapter V contains the conclusions of the

study and makes recommendations for further study.



Chapter II

RELATED RESEARCH

INTRODUCTION

The research directly related to the teaching of mathematical

proofs to elementary school children is scarce. So scarce, in fact,

that a review of the literature produced only one study in which an

effort was made to teach elementary school children how to prove math-

ematical theorems, and this occurs in a course on logic (see Suppes'

experiment below). However, there are two types of research studies

which may be related to the problem of this study. First, research

studies are presented which have made an effort to teach logic to ele-

mentary school children. SecOnd, studies which make an attempt to de-

termine the status of the logical abilities of children are discussed.

It should be stated at the outset that the author is not certain

as to the extent to which the cognitive skills reported in such studies

are related to the ability to learn mathematical proofs. Nonetheless,

since those who have conducted such studies apparently believe that

such a relationship exists, the results are reported in this chapter.

TRAINING IN LOGIC

There are several studies which report attempts at teaching logic

to elementary school children. Hill (1967, p. 25) reviews a number of

early studies and concludes that they "tend to support the conclusion

22
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that specific training contributes to improvement in logical skills."

Two recent studies have made a more systematic attack upon the problem

than did earlier ones.

The first was conducted by Suppes and Hill from 1960 to 1963.

During the 1960-61 school year, Dr. Hill instructed a class of talented

fifth graders in mathematical logic, a course developed by herself and

Professor Suppes. The materials for the course were extended and revised

into a textbook entitled Mathematical Logic for the Schools. After

developing such topics as symbolizing sentences, logical inference,

sentential derivation, truth tables, predicates, and universal quantifiers,

the book applies this logic to a specific mathematical system and proves

a variety of simple (and obvious) facts about addition, such as the

statement that 4 = (1 + (1 + 1)) + 1 (1962, p. 250). A chapter on

universal generalizations includes the proofs of such statement as

(V x) (V y) ( -x = y4--Ox = -y) (1962, p. 273).

During the following two years, this book was used with experimental

classes. In 1961-62, twelve classes of fifth-grade students studied

logic, and in 1962-63, eleven classes of sixth graders continued with

a second year of logic, and eleven new fifth-grade classes were added

to the study. The teachers were given special in-service training in

logic, but no details of the mathematical content or of the pedagogical

procedures used with the children were reported. For purposes of

comparison, two Stanford University logic classes were selected as

control groups.

The main conclusion of this three-year study was that the upper

quartile of elementary school students could achieve a significant

conceptual and technical mastery of elementary mathematical logic.
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However, no objective data is reported and no comments are made con-

cerning the ability of these sixth graders to prove mathematical theorems.

This conclusion (and others as well) was challenged by Smith (1966)

who pointed out that the evidence provided in the report was incomplete

and overgent.ralized. A purposive sample was used instead of a random

sample, hence generalizing to "the upper quartile of elementary school

students" is inappropri7te. In addition, Smith points out that even if

his sample was random, Suppes should be generalizing to only the highest

7 percent of the elementary school population, for although the upper

quartile of the students in the experiment did meet with considerable

success in studying logic, these children had an I. Q. range from 142

to 184. Therefore, the study indicates that extremely bright children

can learn mathematical logic.

A more recent study was conducted by Ennis and Paulus (1965) in

which an attempt was made to teach class logic and conditional logic.

They defined class logic as follows (1965, p. 11-5):

The basic units in class logic are parts of sentences,

subjects and predicates. The sentences do not reappear

essentially unchanged; instead the subjects and predicates

are separated from each other and rearranged. Here is

an example to which the criteria of class logic are to

be applied. It is from "The Cornell Class-Reasoning

Test":

Suppose you know that

All the people who live on Main Street were born in

Milltown. None of the students in Room 352 live on

Main Street.

Then would this be true?

None of the students in Room 352 were born in Milltown.

For purposes of simplification and ease of teaching, the

subject and predicate are revised in order to form classes.

Following this procedure the classes involved in the above
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example are (1) the people who live on Main Street,
(2) the people who were born in Milltown, and (3)

the students in Room 352. The two given statements
present relationships between the first and second

classes and the third and second classes respectively.
The statement about which one must decide suggests

a relationship between the third and first classes.

Thus the subjects and predicates as represented by
the classes are the basic units in this kind of

reasoning.

Conditional logic is described as follows (1965, p. 11-4):

Sentence logic is concerned with arguments in which

the basic units are sentences. That is, distinct

sentences, often connected or modified by such

logical connectives as 'if', 'then', 'and', 'or',

'not', and 'both', appear essentially unchanged
throughout the course of the argument.

...Sometimes sentence logic itself is broken up

into parts, depending on the logical connective

which is used. When the connective is 'if', 'only if',

'ifor 1.1. and only if', or any synonyms of these,

we have what is sometimes called, and what we shall

call, a 'conditional statement'. Arguments which

contain only conditional statements and simple

sentences or negations thereof shall be called

conditional arguments. Reasoning associated with

such arguments shall be called conditional reasoning.

Twelve basic principles of conditional logic and eight basic

principles of class logic were identified. Class logic was taught to one

class each at grades 4, 6, 8, 10 and 12, and conditional logic was taught

to one class each at grades 5, 7, 9 and 11. In grades 4 9, existing

classroom units were used, and at the high school level, volunteers

were selected from study halls. Efforts at randomization were not

reported and Control groups were selected. A Nonequivalent Control

Group design was used (see Campbell and Stanley, 1968, p. 47):

0 X 0 (Treatment)

0 0 (Control)
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The treatment groups were pretested, then taught 15 days of logic,

and six weeks later were posttested. The control groups were also

pretested and posttested.

They summarize the results as follows (1965, p. VIII-20):

Class reasoning is apparently teachable to some extent
from age 11-12 onwards. Students younger than that did
not benefit from the 15 days of instruction that we
were able to give them. Perhaps under different conditions -
or with more time - they also would have benefitted.
From 11 12 onward, there is apparently modest, fairly
even improvement as a result of whatever natural-
cultural sources are operating, and deliberate teaching
of the sort we did can contribute modestly to this
improvement. By age 17 - 18, there was a result of
existing natural-cultural influences on our LDT's
considerable mastery of the basic principles of class
logic. Our teaching made a modest improvement. Over-

all, talking in terms of readiness, we can say that
froM age 11 12 onward, our students were ready for
modest improvements in mastery of the principles of
class reasoning, and that by age 17 - 18, the group
as a whole was ready to make the modest improvement
that, when made, justifies our saying that for practical
purposes they have mastered the basic principles of
class logic.

Conditional logic makes a different story. Apparently,

when given the sort of instruction we provided, our
'LDT's were not ready to make much improvement until
upper secondary; but by age 16 - 17 were ready to make
great strides. These improvements in mastery were
particularly evident among the fallacy principles
(where there is much room for improvement); but they
also occurred among the contraposition principles, the
affirming-the-antecedent principle and to a slight

extent the transitivity principles. No improvement was
registered among the 'only-if' principles, though this
might be because insufficient time was devoted to
them and at the outset the 16 17 year olds were fairly
good at them.

The failure to produce better results was attributed in part to inade-

quate time allowances. The study could also be criticized for its lack

of planning for instruction. It is impossible to determine from the

report just what "sort of instruction" was provided. The content was

.1%
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not analyzed, prerequisite behaviors were not identified, instructional

procedures were not outlined, instructional materials were not prepared,

each teacher constructed his own set of exercises, etc. The content

was identified and each teacher was told to do the best he could with

it (1965, VI-11) :

Each staff teacher was instructed to teach the logical principles
roughly in order, using whatever style of teaching seemed to him
to be most appropriate and going as far down the list as he could
in the available time.

As pointed out by Romberg (1968, p. 1) an outline of the content is

merely one of many variables which comprise an instructional unit. The

units may have failed because inadequate attention was given to the

other variables.

STATUS STUDIES

There are a number of status studies which attempt to measure the

existence or non-existence of specific logical principles in children

of various ages.

Hill (1967) conducted a status study prior to her collaboration with

Suppes on the experiment described above. The study was designed to

determine how successfully 6, 7 and 8 year old children could recognize

valid inference schemes. A 100 item test was individually administered

to 270 better-than-average students. The items did not require the

student to actually draw conclusions from given premises, but he was

required to detere' if certain statements followed from others.

Three categories In elementary logic were tested: sentential logic,

classical syllogism, and logic of quantification. The students were

instructed to respond either "yes" or "no" to the following kinds of

items:
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Sentential logic:

If this is Room 9, then it is fourth grade.

This is Room 9.

Is this fourth grade?

Classical Syllogism:

All of Ted's pets have four legs.

No birds have four legs.
Does Ted have a bird for a pet?

Logic of Quantification:

None of the pictures was painted by anyone I know.

I know Hank's sister.
Did she paint one of the pictures?

The following table summarizes the results of the study and indicates

which patterns of inference were tested (1967, p. 57):

Table 11 Percentage of Correct Responses for Different Principles

of inference by age level

Principles of Inference Percentage of Correst Responses

Age 6 Age 7 Age 8

Modus ponendo ponens 78 89 92

Modus tollendo ponens 82 84 90

Modus tollendo tollens 74 79 84

Law of Hypothetical Syllogism 78 86 88

Hypothetical Syllogism and
tollendo tollens 76 79 85

Tollendo tollens and tollendo

ponens 65 77 81

Ponendo ponens and tollendo tollens 65 67 76

Classical Syllogism 66 75 86

Quantificational Logic-Universal

quantifiers 69 81 84

Quantificational Logic-Existential

quantifiers 64 79 88
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The main conclusion is that children of ages 6 8 are able to recog-

nize valid conclusions determined by formal logical principles. Such

children make use of certain principles of inference, not in the sense

that they can verbalize them, or know principles as principles, but in the

sense that they behave in drawing conclusions in accordance with the

criteria of validity of formal logic.

Hill concludes that her results are counter to two of Piaget's major

contentions: (1) that child4en at this age level are not capable of

hypothetico-deductive reasoning; (2) that logical abilities develop in

stages.

O'Brien and Shapiro (1968, p. 533) point out that the behavioral

manifestation chosen by Hill was but one of several possible behaviors:

The problem was that in each of the test items, a necessary
conclusion followed from the premises and the task of the
student in each case was to simply discern whether the third
statement given was the conclusion or the negation of the

conclusion. In no case was the student called upon to test
the logical necessity of the conclusion, a behavior which
the present investigators felt was vital to an adequate
consideration of hypothetical-deductive reasoning. There-

fore, the present study was undertaken to investigate the
second behavior and to determine the differences, if any,
between a logically necessary conclusion and its negation
and their ability to test the logical necessity of a

conclusion.

O'Brien and Shapiro conducted a study in which two tests were used:

(1) Test A, the test used in the Hill study; (2) Test B, the same test

with 33 of the original 100 items "opened up" so that no necessary con-

clusion followed from the premises. All the items on the second test

had a third option of "Not enough clues", as well as.'"Yes" and "no"

options. The following items are the "opened up" versions of the items

given as examples in the above discussion of the Hill study:
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Sentential logic (1968, p. 533):

If this is Room 9, then it is fourth grade.
This is not Room 9.

Is it fourth grade?
a. Yes b. No c. Not enough clues

Classical Syllogism:

Some of Ted's pets have four legs.
No birds have four legs.

Does Ted have a bird for a pet?
a. Yes b. No c. Not enough clues

Logic of Quantification:

Some of the pictures were painted by people I know.
I know Hank's sister.

Did she paint one of the pictures?
a. Yes b. No c. Not enough clues

The results of Test A essentially confirm the findings of the Hill

_study, The percentage of correct responses are not significantly diff-

erent from what would be expected from random guessing, The results of

Test B, however, are quite different. The percentage of correct

responses on the 33 open items is significantly lower than what would

be expected from random guessing. Although it is not mentioned in their

report, these results are exactly what Piagetian theory predicts:

Children at this level of cognitive development are unable to cope with

the world of the possible (Inhelder, 1958).

The experimenters thus concluded that Hill's conclusions must be

interpreted with caution (1968, p. 537):

That these two behavioral manifestations of hypothetical-
deductive thinking occur at such different levels among
children of the same age seems to bring into question the
challenge that the original research gave to Piaget's theory
regarding the growth of this kind of logical thinking in
children.
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Prior to the O'Brien and Shapiro study, Ennis and Paulus made a

comprehensive review of the literature, including Hill's study. They

concluded that research indicates the following (1965, p. V-42):

1. That there is a development of logical ability as
children grow older.

2. That no stages in this development have definitely been

identified.

3. That children can do at least some conditional reasoning
before 11 - 12 (in conflict with Piaget's claim), but
that there is no work on the extent of the mastery of
conditional logic in adolescence.

4. That some class logic is mastered by age 11 - 12 and
that Piaget apparently thinks that it is mastered by

age 11 - 12.

5. That the ability to consider questions of validity
regardless of belief in truth of the parts of an

argument is not attained by age 11 12.

6. That there is practically no study on the different
developmental patterns of different principles and

components of logic.

On the basis of this information, Ennis and Paulus conducted a status

study in an attempt to gather more information. This occurred prior to

their attempts to teach logic (discussed above). The same students were

used for both studies. Hill's test was reviewed and judged unsuitable

for their purposes (1965, p. IV - 2):

Although arguments in which the conclusion contradicts the
premises are a sub-class of invalid arguments, a more
important sub-class is the group of arguments in which the

conclusion does not follow, but also in which the conclusion

does not contradict the premises. People are rarely trapped

into thinking that an argument is valid in which the con-

clusion actually contradicts the premises. The important

distinction is between a valid argument and between one

which someone might be inclined to call valid, but which is

really not valid. The mastery of this distinction is not

tested for in this test. Thus, it too was unsatisfactory for

our purposes.
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A new test was, therefore, constructed. It included items in which

the proposed conclusion did not follow necessarily from the premises.

For example:

52. Suppose you know that

None of Tom's books are on the shelf.
No science books are on the shelf.
Then would this be true?
At least some of Tdm's books are science books.

a. Yes b. No c. Maybe

The main findings were as follows (1965, p. V-42):

a. In this age range there is a development of ability
to do logic as students grow older.

b. If there are stages in this range, they are not
noticeable at the level of refinement of our
measuring techniques.

c. The basic principles of conditional reasoning are not
generally mastered by age 11 - 12, nor by age 17.

d. The basic principles of class reasoning are not gen-
erally mastered by age 11 12, nor are they fully
mastered by age 17.

e. The truth validity characteristic (the ability to
consider questions of validity regardless of belief
in truth of the parts of an argument) is not attained
by age 11 12, nor by the age of 17.

f. The patterns of development and mastery of principles
of logic vary, but there is considerable similarity
between the two types of logic studied. The principles
expressing the basic logical fallacies are the most
difficult at ages 10 - 12, but are also the ones in
which there is generally the most improvement over the
range studied. The most extreme example is the
principle that a statement does not imply its con-
verse. The principle of contraposition is one which
in this range starts at medium difficulty and does
not become much easier for older students. The tran-
sitivity principle starts in this range at medium
difficulty, but is considerable easier fo. older
students.
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D1SCUSSIOP

Both Hill and Ennis have questioned the findings of Piaget. In

particular their findings indicate that children attain some logical

skills earlier and some later than at the ages cited by Piaget. However,

Piaget is not alone in his analysis of children. There is a considerable

amount of literature which tends to support his findings. Peel (1960)

states that the elentary school child is limited to concrete situations

in his immediate experience, and the adolescent begins to carry out

logical operations on abstract and symbolic material. Gesell (1956)

describes the early adolescent years in much the same way. Broudy, Smith

and Burnett (.964) point out that the young adolescent is capable of

thinL.ng in purely abstract terms, systematically using the kinds of

formal operations characteristic of scientists and mathematicians.

Wallach (1963) sees the adolescent as being able to formulate and verify

propositions and hypotheses. Yudin and Kates (1963) support these views

and list 12 as the age at which formal operations first appear.

There are, therefore, those who as_ee with Piaget, and those who dis-

agree with him. The research studies reviewed here make no effort to

explain these differences. There is a possibility that these differences

do not really exist. The researchers who agree with Piaget are engaged

in the task of describing a generalized thinking activity, and the other

group seem to be concerned with the child's ability to handle specific

logical principles. The former begin with the child in a problem

situation and observe his behavior, whereas the latter begin with a set

of logical principles and are interested in the child's response to them.

Piaget begins with a problem situation, usually one involving

physical apparatus. A problem is posed to the child, and the observer
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records the child's responses. On the basis of the responses. Piaget

hypothesizes that the child has certain cognitive structures. One such

experiment involves a pendulum (Inheldet, 1958, p.67):

The technique consists simply in presenting a pendulum

in the form of an object suspended from a string; the

subject is given the means to vary the length of the

string, the weight of the suspended object, the ampli-

tude, etc. The problem is to find the factor that

determines the frequency of the oscillations.

In this case, the child must determine that only one factor plays

the casual role. The other variables must be isolated and excluded.

Piaget identifies different behaviors with different stages of cogni-

tive development, For example: (Inhelder, 1958, p. 69):

The preoperational stage I is interesting because the

subject's physical actions still entirely dominate

their mental operations and because the subjects more

or less fail to distinguish between these actions and

the motion observed in the apparatus itself. In fact,

nearly all of the explanations in one way or another

imply that the impetus imported by the subject is the

real cause of the variations in the frequency of the

oscillations.

The research of Ennis, Hill, Miller, and others is of quite a dif-

ferent nature: the subject is not given physical materials with a re-

lated problem to solve. Instead, he is asked to judge the validity of a

given derivation or is asked to derive conclusions from a given set of

premises. Each item involves a particular logical principle or fallacy.

The researcher tabulates the responses to each item, and then attempts

to conclude that children of different.dges know or do not know various

logical principles.

There are two important differences involved here:

(1) The stimuli are different. In one case, the student is given

physical materials which he can manipulate and experiment with,
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and in the othe- he is given a list of verbal or written

statements which cannot be physically manipulated.

(2) The tasks are different. In the first case, he is asked

to discover features which govern physical objects, and

in the other he must determine the validity of reasoning

patterns.

It seems reasonable to maintain that different skills are being

measured. Perhaps there is no such ability as the logical ability of

an individual in the sense that he has certain logical principles at

his disposal which he calls into play with equal facility and effective-

ness in all situations. Perhaps he has logical abilities which vary

from situation to situation. Hill cites a number of sources which hold

this view and then adds (1967, p.23):

The critics might legitimaLely argue that the influence of
content forces us to talk only about specific logical
abilities, i.e., specific to particular content. Rather,
Piaget assumes that children do dissociate formal relation-
ships from concrete data and can recognize them in many
guises. Certainly, this study, in inference, makes a
similar assumption . .

Hill only considers logical abilities specific co content, yet

there are other dimensions to the problem, e.g., levels of abstractness.

If one student is given a problem involving a real pendulum, the content

is the same in both cases. Yet the two students may be engaged in

quite different tasks.

Degree of personal involvement is another factor which can drasti-

cally affect one's reasoning ability. For example, consider a young man in

two different situations. In the first he is given a hypothetical story

about a man with marital difficulties and is asked to supply reasonable

and logical behaviors which will help the fellow out of his difficulties.
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Then consider the same young man who actually has these same problems

with his own wife. Again the content is the same in both cases, yet

the real world provides us with enough examples to suggest that the

young man may not employ the same logic in both situations.

Such considerations indicate that different situations will evoke

different kinds of logical responses. In short, no two tests measure

exactly the same thing.

Those who subscribe to the belief that an indivudual possesses a

logical ability, quite frequently advocate the te'ching of logic or

critical thinking skills so that the student will become a better thinker

in all realms of human activity. The belief that a geometry course

teaches people "how.lb think" is a prime example, and Miller (1955)

argues that the survival of our democratic institutions may very well

depend on our determination and ability to teach logic in our schools:.

The issue at point is whether training in logic actually prepares

one to be a more logical reasoner in other or all areas of human concern.

The author has known of too many mathematics students who have succumbed

to the logic of door-to-door salesmen to believe that this is the case.

Rather than assuming that the mind has one logical ability which extends

equally well to all domains of cognition, for the purposes of this paper

it is assumed that the mind is so structured as to have different logical

abilities for different areas of cognition. Hence, if it is our goal to

teach students how to prove mathematical theorems, then they should be

given explicit practice in proving theorems. It will not suffice to

teach them logic or general reasoning skills and hope for transfer. In

Niven's words (1961, p. 7):
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If the nature of proof cannot be described or formulated
in detail, how can anyone learn it? It is learned, to use
an oversimplified analogy, in the same manner as a child

learns to identify colors, namely, by observing someone
else identify green things, blue things, etc., and then by
imitating what he has observed.

Polya expresses a similar view when he states (1953, p. V):

Solving problems is a practical art, like swimming, or skiing,

or playing the piano: you learn it only by imitation and

practice.

SUMMARY

It is difficult to determine how relevant the studies reported in

this chapter are to the problem of teaching proof to sixth-grade child-

ren, for it is not known exactly what relationship exists between one's

ability to learn logic and one's ability to write and understand mathe-

matical proofs. Similarly, the status studies mentioned above measure

one's ability to identify correct and incorrect reasoning patterns, and

it is not known whether or not this is essential for writing proofs.

At any rate, a review of the research literature as reported in

this chapter indicates the following:

(1) Attempts to teach logic to elementary school children
have met with varying degrees of success although
extremely bright children can profit from such

instruction.

(2) There are conflicting findings concerning the logical
abilities of children; these differences may be the

result of different testing procedures.

(3) The feasibility of teaching proof to college capable

sixth-grade students has not been demonstrated.

And so in spite of the fact that Hill, Suppes, Ennis and others

have been concerned with improving the reasoning abilities of children,

the major question posed by the present study remains unanswered: Is it

possible to develop materials on mathematical proof so that the proofs

are accessible to average and above-average sixth-grade students?



Chapter III

DEVELOPMENT OF THE UNIT

This chapter gives a detailed, step by step description of how

the unit was developed in accordance with the curriculum development

model of Romberg and DeVault. Figure 2 shows the steps which were

taken in developing the unit.

MATHEMATICAL ANALYSIS (Step 1)

The overall objective of the unit was to investigate the feasi-

bility of presenting proof materials to sixth-grade students. The

analysis consists of selecting the theorems to be included in the unit,

constructing a content outline for the unit, defining a set of action

words, stating specific behaioral objectives in terms of these action

words, and then task analyzing these behaviors into prerequisite skills.

Selection of the theorems. Selecting the theorems was the first

major decision which had to be made. What type of subject matter

should serve as a vehicle for introducing proof into the curriculum?

Geometry? Modern Algebra? Number Theory? To aid in selecting the

theorems, the following set of criteria was established:

(1) The theorems should be directly related to the fundamental

concepts and subject matter with which sixth-grade students are

familiar. The investigator believes that reasoning for the sake of

38
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reasoning has very little meaning to sixth-grade students. A study

of logic would be excluded by this criterion;

(2) The mathematical concepts should be learned in an appropri-

ate context, rather than in isolation. The theorems should relate to

concepts with which the students are familiar;

(3) The prerequisite knowledge should be minimal. The efforts

of the teacher should be concerned with the proof itself, and not with

an assortment of knowledge which is necessary for the proof;

(4) The theorems should provide an active role for the students

(rather than having the students passively listening to lectures); and

(5) The theorems should provide some opportunities for discovery

by the children. It is hoped that the students will be able to for-

mula-a the theorems themselves.

These criteria were applied to a wide variety of theorems. The

following sequence (" theorems appeared as recommendations in the

Cambridge Report and appeared to meet the criteria better than any

other set of. theorems: For any whole numbers A, B, and N,

If NIA and NIB, then NI(k+ B);

If NfA and NIB, then NI-(h + B);

There is no largest prime number.

Since sixth graders are usually nat familiar with negative num-

bers, this set of theorems can be interpreted as applying to the set

of whole numbers. Hence, the theorems are statements about mathemati-

cal entities with which typical sixth-grade students are familiar.

The students should have no difficulty in understanding what the

theorems mean.
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The prerequisites needed to prove these results were fewer in

number and less difficult to learn than the prerequisites for the

other theorems which were examined. Furthermore, the theorems can be

illustrated with numerical examples, thus providing opportunities for

student involvement. Therefore, plans were made to build a unit of

instruction around these three theorems.

Outline of the unit. An outline of a tentative unit was then

written around these three theorems. Several considerations guided the

writing. First, the investigator wished to examine how well students

understand the strategies of the proofs. In particular, can the stu-

dents prove new theorems which require the application of the same

strategies? In an attempt to answer this question, three theorems

I

were added to the unit: for any whole numbers A, B,a d N,

If NIA and NIB, then NI(A B);

'N '\f

If NIA and NIB and NIC, then NI(A + B + C); and

If N+A and NIB, then N-1-(A B).

The proof of the first theorem requires the student to use the fact

that multiplication distributes over the difference of two numbers

and involves the same strategy as the first theorem in the unit. The

second theorem involves the same strategy, but requires the student

to distribute multiplication over the sum of three numbers. The

proof of the third theorem above involves the same strategy as the

second theorem in the unit and requires the student to solve an

equation by addition rather than by subtraction.

Throughout the remainder of this paper the theorems will be

referred to by the following numbers, it always being understood that
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A, B, and N refer to whole numbers:

Theorem 1: If NIA and NIB, then NI(A + B);

Theorem 2: If NIA and NIB, then NI(A - B):

Theorem 3: If NIA, NIB, and NIC, then NI(A + B + C);

Theorem 4: If N-fA and NIB, then N4(A + B);

Theorem 5: If N4A and NIB, then Nf(A - B); and

auy set of prime numbers (P1) P2, ...)-P
n

},

there is always, ^-nnther prime number.

It should be pointed out that since the students studied

negative numbers, the proof for the sum of two numbers does not

establish the result for the difference of two numbers. Hence, the

theorems are different from the students' point of view.

A second consideration which guided the creation of the unit

was the ambiguity of the word "proof" in everyday usage of the word.

It was decided to include a general discussion of the meanings of

proof, from "that which convinces" to a logical argument. With

different connotations of the word "proof" in usage, a major problem

lies in motivating the need for a rigorous, logical proof of the

theorems in the unit. It was decided that two activities would be tried

out in the first formative study, and both of them employ the same

strategy: lead the student into inductively hypothesizing a

generalization, and then torpedoing that generalization. The upshot

of such activities is to stress that repeated instances of a general

statement does not constitute proof.

The first activity is partitioning a circle into regions by

connecting a given number of points on its circumference. Two
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points will produce two regions, three points four regions, four

points eight regions, and five points will produce sixteen regions

(See Figure 3). The idea is to get the students to hypothesize that

the next partitioning will yield thirty-two regions, and then have

them partition the circle with six points. This time there are

thirty regions (See Figure 4).

The second example uses the expression N
2

N + 17, which will

yield prime numbers when evaluated for all integers from 0 to 16,

but which will yield a composite for N = 17. The students were to be

enticed into making the induction that N2 N + 17 will always yield

prime numbers, and then the hypothesis was to be torpedoed.

An outline containing nine lessons was drafted.

1. Meaning of proof

(a) authority

(b) empirical evidence

(c) reasoning

2. Prerequisite concepts

(a) prime numbers

(b) ACD Laws

(c) divisibility

(d) solving equations

(e) substitution

3. Motivation for proof and counter example

4. Theorem 1: If NIA and NIB, then NI(A + B).

5. Theorem 2: If NIA and NIB, then NI(A - 13).



Two Regions

Eight Regions
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Four Regions

Sixteen Regions

Figure 3. Partitioning the Circle into Regions
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Thirty Regions

Figure 4. Partitioning the Circle into 30 Regions
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6. Theorem 3: If NIA and NIB and NIC, then NI(A t B t C).

7. Theorem 4: If NfA and NIB, then Ni-(A t B).

8. Theorem 5: If NfA and NIB, then Nf(A B) .

9. Theorem 6: There is always another prime number.

Once the theorems were selected, an operational definition of

proof was needed to guide the analysis of the proofs of these theorems.

The definition chosen was the definition given by Smith and Henderson

in the TwentyFourth Yearbook of the National Council of Teachers of

Mathematics (1959, pp. 111-112):

Proof in mathematics is a sequence of related statements
directed toward establishing the validity of a conclusion.
Each conclusion is (or can be) justified by reference to
recognized and accepted assumptions (including the assumptions
of logic), definitions, and undefined terms, previously
proved propositions (including those of logic), or a combination
of these reasons.

In order to stress that each step in a proof must be justified in

some appropriate way, a STATEMENT REASON column format was chosen

for the proofs.

Eves and Newsom (1964, p. 156) state that any logical discourse

must conform to the following pattern:

(A) The discourse contains a set of technical terms (elements,
relations among the elements, operations to be performed on
the elements) which are deliberately chosen as undefined terms.
These are the primitive terms of the discourse.
(B) All other technical terms of the discourse are defined by
means of the primitive terms.
(C) The discourse contains a set of statements about the
primitive terms which are deliberately chosen as unproved
statements. These are called the postulates, or primary
statements, P, of the discourse.
(D) All other statements (about the primitive and the defined
terms) of the discourse are logically deduced from the postulates.
These derived statements are called the theorems, T, of the
discourse.
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(E) For each theorem Ti of the discourse there exists a

corresponding statement (which may or may not be formally
expressed) asserting that theorem Ti is logically implied
by the postulates P. (Often the corresponding statement
appears at the end of the proof of the theorem in some such
words as, "Hence the theorem," or "This completes the proof
of the theorem," etc.)

A full understanding of this pattern of postulational thinking

can only come with experience. The purpose of this unit is to

use a sequence of six theorems to introduce the students to this

pattern. The basic approach was not to start from first principles

and develop a system, but rather to start with concepts with which

the students were familiar and prove some results about these

conceptS.

Action words. Action words play a vital role in determining the

success or failure of instruction. By stating the objectives of the

unit in terms of behaviors described by action words, measurement

procedures can be used to determine how successful the instruction

has been.

The goal of the unit was to teach sixth-grade students how to

prove six theorems. Hence, the main action word is "proving." In

addition, there are a number of other action words needed to describe

the behaviors used in developing the prerequisites for the proofs.

Six action words were defined.

(1) Identifying. The individual selects (by pointing or marking with

a pencil) statements which might be confused with one another.

(2) Naming. Supplying (oral or written) the proper name for an

instance of a given principle.
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(3) iApplying a rule or principle Using a rule or principle to

derive a statement from a set of given facts.

(4) Writing a_proof (proving). Writing a sequence of statements and

reasons in logical order to establish_ the validity of a given

theorem.

(5) Constructing a number. Applying operations to a given set of

numbers to form a new number not in the given set.

(6) Giving an example. To state or write an example which illustrates

a given principle.

Task analysis. A task analytic approach was employed in the

development of the unit. First, the mathematical goals of the unit

are expressed in terms of well-defined action words. The idea is to

express the objectives of instruction in terms of observable performante

tasks. If instruction is successful, the students will demonstrate

the ability to perform the specified behavioral objectives. Hence, the

success of the instruction is measured in terms of student performance

on predetermined performance objectives. Once the curriculum developer

has specified these objectives, a task analysis is performed. The

task analytic procedure was developed by Gagde (1965b) to train human

beings to perform complex tasks. The basic idea of this approach is

to break down each behavioral objective into prerequisite subtasks;

these subtasks may in turn be analyzed into finer subtasks. The pro-

cedure continues until one reaches a set of elemental tasks which

cannot or need not be further analyzed, If properly done, the task

analysis should yield a hierarchy of tasks which indicate the steps
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a student must take, in order to learn the terminal behavioral objective.

The hierarchy indicates how instruction should proceed: one starts

with the simplest tasks and learns each. subtask. until the terminal

objective has been mastered.

Gagne (1961, 1962, 1963) has applied this procedure to several

mathematical tasks. However, all of the tasks which appear in the

literature are rather simple ones, such as determining the intersection

of two sets, adding integers, and solving equations. The behaviors

which were specified for the unit on proof were considerably more complex.

The main behavioral objectives were "proving mathematical theorems."

These behaviors consist of writing a sequence of statements and

corresponding reasons which together establishes the theorem.

Repeated attempts to task analyze a variety of proofs reveal that

there are two basic components of any proof: (1) a knowledge of and

ability to manipulate subject-matter content; and (2) a method, a plan,

or a strategy which permits the student to weave the subject-matter

content into a valid argument. The former is a product, the latter a

process, and both are necessary for any proof.

To separate the subject matter from the strategy is sometimes a

difficult task. It is also somewhat artificial in the sense that they

always occur together as a whole. In stressing that the act of knowing

is a process and not a product, Bruner comments upon this fact

(1966, p. 72):
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Finally, a theory of instruction seeks to take account of the

fact that a curriculum reflects not only the nature of the

knowledge itself--the specific capabilities--but also the

nature of the knower and of the knowledge-getting process.
It: is the enterprise par excellence where the line between

the subject-matter and the method grows necessarily in-
distinct.

For instructional purposes it is nonetheless desirable to

analytically separate the two. Gagde, the major proponent of the

task analysis method, is aware of the distinction between product

and process and has made the following comments about their im-

portance in education (1965a, p. 168):

Among the other things learned by a person who engages in

problem solving is 'how to instruct oneself in solving

problems.' Such a capability is basically composed of
higher-order principles, which are usually called strategies.

The manner of learning this particular variety of higher-

order principles is not different in any important respect

from the learning of other principles. But whereas the

higher-order principles previously discussed deal with

the content knowledge of the topic being learned, strategies

do not. The first type may therefore be called content
principles, whereas strategies are heuristic principles.
Strategies do not appear as a part of the goals of

learning, but they are nevertheless learned.

If strategies can be learned in much the same manner as other

principles, why aren't they included "as part of the goals of

learning?" The answer is that they are included in any good

mathematics program. The Twenty-Fourth Yearbook of the National

Council of Teachers of Mathematics, for example, devotes an entire

chapter to proof (1959, p. 166):

When a teacher or student wants to prove a proposition, he

will find it useful to know various plans or strategies of

proof.
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The Yearbook goes on to list eight strategies of proof:

(1) counter-example; (2) modus ponens; (3) developing a chain of

propositions; (4) proving a conditional; (5) reductio ad absurdum;

(6) indirect proof; (7) proving a statement of equivalence; and

(8) mathematical induction. These methods are taught in all good

mathematics programs.

Gagne's statement that strategies "are nevertheless learned"

is challenged in the following comments by Suppes (1966a, p. 73):

From years of grading mathematical proofs given on examinations

at the university level, I am firmly convinced, as I have

already indicated, that the ability to write a coherent

mathematical proof does not develop naturally even at the

most elementary levels and must be a subject of explicit

training.

Gagne continues with a line of reasoning which for practical

purposes rules out strategies as a goal of learning (1965a, p. 170):

Obviously, strategies are important for problem solving,

regardless of the content of the problem. The suggestion

from some writings is that they are of overriding importance

as a goal of education. After all, should not formal in-

stru:tion in the school have the aim of teaching the student

'how to think'? If strategies were deliberately taught,

would not this produce people who could then bring to bear

superior problem-solving capabilities to any new situation?

Although no one would disagree with the aims expressed,

it is exceedingly doubtful that they can be brought about

by teaching students 'strategies' or 'styles' of thinking.

Even if these could be taught (and it is possible that they

could), they would not provide the individual with the

basic firmament of thought, which is subject-matter knowledge.

Knowing a set of strategies is not all that is required for

thinking; it is not even a substantial part of what is

needed. To he an effective problem solver, the individual

must somehow have acquired masses of structurally organized

knowledge. Such knowledge is made up of content principles,

not heuristic ones.
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One must agree with Gagne that subject-matter knowledge should

be an important goal of instruction in any mathematics classroom,

but one need not. and many do not agree with his conclusions about

the teaching of strategy. Polya's two volume work Mathematical

Discovery is devoted to problem solving heuristics, and he thinks

a greater emphasis should be placed on strategies (1953, p. viii):

What is know-how in mathematics? The ability to solve

problems--not merely routine problems but problems

requiring some degree of independence, judgment, originality,

creativity. Therefore, the first and foremost duty of the

high school in teaching mathematics is to emphasize

methodical work in problem solving.

Fine also takes issue with Gagne's position (1966, p. 100):

Another possible drawback is that the time spent by a

student on problem solving might be better used in the

systematic study of some important discipline. It is

debatable whether this is a valid objection. There is

ample evidence that R. L. Moore's methods have produced

many outstanding creative mathematicians. Rademacher's

problem seminar, for many years a required course for

graduate students at the University of Pennsylvania, has

trained many generations in research and exposition. It is

my own feeling that the habits of mind engendered by such

methods far outweigh all other considerations.

Mathematicians are not the only ones who take issue with Gagne

on this matter. In Toward a Theory of Instruction Bruner makes the

following statement (1966, p. 72):
I
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A body of knowledge, enshrined in a university faculty, and

embodied in a series of authoritative volumes is the result

of much prior intellectual activity. To instruct someone

in these disciplines is not a matter of getting them to

commit the results to mind; rather. it is to teach him to

participate in the process that laakes possible the establishment

of knowledge. We teach a subj.:..,ct, not to produce little

living libraries from that subject, but rather to get a student

to think mathematically for himself, to consider matters as

a historian does, to take part in the process of knowledge-

getting. Knowing is a process, not a product.
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Gagne's position is thus at odds with the opinions of many

of today's leading educators. He simply places all of his

emphasis upon subject matter. In his words, "strategies do not

appear as a part of the goals of learning."

It is interesting (but not surprising), therefore, to discover,

after many attempts to task analyze the behaviors involved in

proving theorems, that the basic task analysis model is inadequate

when applied to higher-order cognitive tasks. In the first place

the content of a proof does not necessarily fit Into a

hierarchical pattern. Indeed, many proofs pull together pieces

of content which are totally independent in the sense that

knowledge of one piece is not a prerequisite foreknowledge of

another. For example, a simple proof will illustrate the point.

Theorem: If A, B, and N are positive integers, and if NIA

and NIB, then NI(A + B).

Proof:

(1) A = NP
B = NQ

(Definition of divides)

(2) A + B = NP + NQ (Substitution)

(3) A + B = N(P + Q) (Distributive law)

(4) Hence NI(A + B) (Definition of divides)

The behaviors involved in proving this theorem are independent

of each other. The first step is to form the correct algebraic

expression. Each succeeding step in the proof requires a knowledge

of a particular principle and the ability to apply this principle

to the expression. The principles are not dependent upon one
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another--knowledge of one is not a prerequisite for knowledge of

another. Considered in terms of observed behaviors, the proof

would yield a behavioral hierarchy similar to the one illustrated

in Figure 5. The terminal behavior, "proving the theorem," is

dependent upon each of the other behaviors, hence each behavior

is linked to the terminal behavior. But aside from this, there

are no dependency relationships in the "hierarchy." "Further-

more, the relative cognitive complexity of each task is difficult

to determine, hence all the behaviors have been placed on the same

level in the hierarchy.

A further difficulty arises if one or more of the prerequisite

behaviors are to be taught as part of the unit. Each such behavior

would then have to be task analyzed. The result would be a

hierarchy of hierarchies (See Figure 6). The diagram represents

the extreme case where the learner must be taught each of the

prerequisite behaviors. For the present study it is anticipated

that the students will know some, but not all, of the prerequisites.

Despite the above modifications in the Gagriean task analysis

model, the model still does not fit the behavior referred to as

"proving," for it does not depict the role which strategy plays

in the proof. Gagne, of course, denies that strategies are a goal

of learning. If this were true, the model in Figure 6 would be

sufficient. But it is not true--at least it is not true for the

mathematics classroom in general, and this unit on proof in

particular. Strategy is an important part of the instructional unit.
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PROVING THE THEOREM

APPLYING THE

DEFINITION OF

DIVIDES

APPLYING THE

DISTRIBUTIVE

LAW

APPLYING THE

SUBSTITUTION

PRINCIPLE

Figure 5. A First Approximation of a Task Analysis
for "Proving a Theorem"

:.1
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PROVING THE THEOREM

TASK ANALYSIS FOR
APPLYING THE
DEFINITION OF

DIVIDES

TASK ANALYSIS FOR
APPLYING THE
DISTRIBUTIVE

LAW

TASK ANALYSIS
FOR APPLYING
THE

SUBSTITUTION
PRINCIPLE

Figure 6. A New Task Analysis Model Containing Other Learning

Hierarchies
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If student behaviors are to be task analyzed to aid instruction,

strategies must be included in the analysis. So the question

becomes: how and where can strategies be inserted in the learning

set hierarchy to accurately reflect their relationship to other

behaviors?

The basic relationship which must be incorporated in the model

is the fact that the strategy is applied to the subject matter; it

gives order to otherwise unrelated facts. This suggests a further

modification of the basic model as illustrated in Figure 7. Again

we have a hierarchy of hierarchies, but this time it is a three-

dimensional hierarchy. This model incorporates the following features

of the behavior "proving'a theorem":

(1) proving a theor.em depends upon two things, a knowledge

of subject matter and applying a strategy. This is depicted in the

model by the fact that the planes containing the strategy and

the behavioral hierarchies of content are below the plane for

proving the theorem, and they are connected with bars to indicate

the dependencies;

(2) a knowledge of subject matter requires less complex cognitive

skills than the ability to organize that subject matter and apply a

strategy to it, and proving a theorem is a more complex skill than

the ability to apply a strategy. This is reflected in the model

by the fact that the lowest plane in the hierarchy contains the

behavioral hierarchies of content objectives, the middle plane

contains an analysis of strategies, and the uppermost plane contains
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/PROVING
THE

THEOREM

APPLYING A STRATEGY

TASK ANALYSIS FOR
APPLYING THE
DEFINITION OF

DIVIDES

TASK ANALYSIS FOR
APPLYING THE
DISTRIBUTIVE

LAW

L
TASK ANALYSIS
FOR APPLYING THE

SUBSTITUTION
PRINCIPLE

Figure 7. A Three-Dimensional Model for Task Analyzing the

Behaviors Involved in Proving Mathematical Theorems



the proof of the theorem; and

(3) strategy and subject-matter content are combined to prove

the theorem. The model depicts this in that the bars from each

of the lower plane meet in the strategy plane, and a single

bar extends upward to the top plane.

Utility is the ultimate test for any model. The investigator

believes that this 3-dimensional model more accurately fits proof-

making behaviors than does the traditional model, and that it is

useful in preparing an instructional analysis for higher-order

cognitive tasks. It illustrates that the task analysis consists

of three parts: an analysis of subject-matter content, an analysis

of the strategy to be employed, and an analysis of the proof

itself into behavioral terms.. Hence, this model was followed in

task analyzing the behaviors in the unit.

First, two-column proofs were written for each of the six

proofs. The degree of rigor to be employed in the proofs was

a major consideration. Some mathematical programs, such as the

one developed by the UICSM, are highly rigorous and require a

sophisticated exposure to detailed logical principles. Since this

unit was designed to be a first exposure to proof, an attempt was

made to adopt a degree of rigor which was compatible with the

abilities of sixth-grade students.

From the proofs, the prerequisite behaviors were identified. A

task analysis was then written for each proof. The proofs of the
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first three theorems consist of direct demonstrations that the

sum of A and B, the difference of A and B, and the sum of A, B,

and C can each be expressed as a multiple of N. Three

prerequisite behaviors are required: (1) applying the definition

of divides; (2) applying the substitution principle and (3) applying

the distributive law. The proofs and task analyses appear in

Figures 8, 9, and 10,

The proofs of Theorems 4 and 5 are more complicated. The

strategy is to employ an indirect argument. Instead of proving

directly that Ni(A + B), one shows that the other possibility,

NI(A + B), is false. And if a statement is false, its negation

must be true (the Law of the Excluded Middle). In order to show

that N l(A + B) is false, one assumes that it is true, then uses

the assumption to arrive at a contradiction. If an assumption

leads to a contradiction, the assumption is false (the Law of

Contradiction). Five prerequisite behaviors are required:

(1) applying the definition of divides; (2) applying the substitution

principle; (3) applying the subtraction (or addition) principle

to solve an equation; (4) applying the Law of Contradiction; and

(5) applying the distributive law. The proofs and task analyses

appear in Figures 11 and 12.

Theorem 6 is. an existence theorem. That is, the proof shows

that another prime number must always exist. The proof does not

tell us what prime number must exist, but merely guarantees that

another one exists. The strategy is to construct a number and



Theorem 1: If NIA and PI B,

STATEMENT

then NI (A + B).

REASON

1. A = NR 1. Definition of divides
B = NQ

2 . A + B = NR + NQ 2. Substitution

3. A + B = N(R + Q) 3. Distributive law

4. Therefore, NI (A + B) 4. Definition of divides

.PROVING
THEOREM 1

APPLYING THE STRATEGY
OF EXPRESSING (A + B) AS
A MULTIPLE OF N

APPLYING THE
DEFINITION OF
DIVIDES

APPLYING THE
SUBSTITUTION
PRINCIPLE

APPLYING THE
DISTRIBUTIVE

LAW

Figure 8. Proof and Task Analysis for Theorem 1
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Theorem 2: If NIA and NIB, then NI(A - B).

STATEMENT
REASON

1. A = NR 1. Definition of divides

B = NS

A B = NR - NS 2. Substitution

3. A - B = N(R S) 3. Distributive law

4. Therefore, NI(A - B) 4. Definition of divides

PROVING
THEOREM 2

.

APPLYING THE STRATEGY
OF EXPRESSING (A - B) AS

A MULTIPLE OF N

..../

APPLYING THE
DEFINITION OF

DIVIDES

1

APPLYING THE

SUBSTITUTION
PRINCIPLE

APPLYING THE

DISTRIBUTIVE
LAW

Figure 9. Pfoof and Task Analysis for Theorem 2
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Theorem 3: If NIA, NIB, and NIC, then NI(A + B + C).

STATEMENT REASON

1. A = NR
B = NS

1. Definition of divides

C = NT

2 . A + B + C = NR + NS + NT 2. Substitution

3. A + B + C = N(R + S + T) 3. -Distributive law

4. Therefore, NI(A + B + C) 4. Definition of divides

PROVING
THEOREM 3

APPLYING THE STRATEGY
OF EXPRESSING (A + B + C)

AS A MULTIPLE OF N

1 I

APPLYING THE
DEFINITION OF

/
DIVIDES

APPLYING THE

SUBSTITUTION
PRINCIPLE

1--
APPLYING THE
DISTRIBUTIVE

LAW

Figure 10. Proof and Task Analysis for Theorem 3



Theorem 4: If NfA and NIB, then N-1-(A + B).

STATEMENT REASON

1. B = NP 1. Definition of divides

2. Assume N1(A + B) 2. Assumption

3. A + B = NQ 3. Definition of divides

4 . A + NP = NQ 4. Substitution

5. A = NQ - NP 5. Subtraction principle

6. A- N(Q - P) 6. Distributive law

7. Hence NIA 7. Definition of divides

8. But Ni-A 8. Given

9. Therefore NI-(A + B) 9. Law of Contradiction

PROVING \
THEOREM 4

APPLYING THE STRATEGY
OF AN INDIRECT PROOF BY

CONTRADICTION

APPLYING
THE

ISTRIBUT-
IVE LAW

APPLYING APPLYING APPLYINGAPPLYING

THE THE THE LAW OF THE DEF-

SUBTRACTION SUBSTITUTION CONTRADICTIO INITION

PRINCIPLE PRINCIPLE OF
DIVIDES

Figure 11. Proof and Task Analysis for Theorem 4



Theorem 5: If N.I'A and NIB, then Nt(A - B).

STATEMENT REASON

1. B = NP 1. Definition of divides

2. Assume NI(A - B) 2. Assumption

3 . A - B = NQ 3. Definition of divides

4. A - NP = NQ 4. Substitution

5. A = NQ + NP 5. Addition principle

6. A = N(Q + P) 6.. Distributive law

7. Hence N IA 7. Definition of divides

8. But N.I.A 8. Given

9. 9. Law of ContradictionTherefore, N4.(A - B)

PROVING
THEOREM 5

/

L
.APPLYING THE STRATEGY

OF AN INDIRECT PROOF

BY CONTRADICTION

APPLYING APPLYING PPLYING TH APPLYING

THE THE ADDITION THE LAW OF

DEFINITIO SUBSTITTITION PRINCIPLE CONTRADICTIO

OF DIVIDES, PRINCIPLE

PLYING
THE

DISTRI-
VLTIVE

AW

Figure 12. Proof and Task Analysis for Theorem 5
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to show that none of the given prime numbers will divide it, thus

implying the existence of another prime number which will divide

it. Three prerequisites are needed: (1) applying the closure

property of whole numbers; (2) applying the previously proven

Theorem 4; and (3) applying the Fundamental Theorem of Arithmetic.

The proof and corresponding task analysis appear in Figure 13.

These six task analyses were then used to plan the instructional

unit.

INSTRUCTIONAL ANALYSIS (Step 2).

How does one go about teaching proof to sixth-grade students?

Unfortunately, there is no theory of learning which can adequately

explain how mathematics is learned. However, during the past

decade several attempts have been made to study the processes

involved in mathematical discovery. The following paragraphs

discuss three of the more significant attempts.

The most complete study of the psychological problems underlying

the learning of mathematics has been conducted by Piaget and his.

colleagues. The basic approach has been to take a number of age

groups and give to a sample of children from each age group a

particular kind of problem and observe the methods which the children

employ to solve the problem. From the observed behaviors it is

inferred that the children have various cognitive structures which

are employed in tackling the problem. Four distinct stages of

cognitive development have been identified. These stages are
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Theorem 6: Given any set of prime numbers {13
1
,P

2
, ...,P

n
), there is

always another prime number.

STATEMENT

1. (P
1
xP

2
x".xP

n
) + 1 is a

whole number.

2. None of the numbers in the
given set will divide it.

3. If (P
1
xP x ...xPn) is a

prime, tfie result is

established. If not, it is
a product of prime numbers
none of which are in the
given set. Hence, in either
case there is another prime.

APPLYING THE
CLOSURE
PROPERTY

PROVING
THEOREM 6

REASON

1. Closure

2. Theorem 4

3. Fundamental Theorem of
Arithmetic

CONSTRUCT A NUMBER
AND SHOW THAT NONE OF
THE GIVEN PRIME NUMBERS

WILL DIVIDE IT

APPLYING
.THEOREM 6

I

APPLYING THE
FUNDAMENTAL
THEOREM OF
ARITHMETIC

Figure 13. Proof and Task Analysis for Theorem 6
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well known and need not be described here. For the purposes of the

present study it is important to note that sixth-grade children are

entering or are in the stage of formal thinking, suggesting that

sixth graders could profit from an introduction to deductive

reasoning.

Bruner (1966) has studied the process of mathematical thinking

and has categorized it into three stages: the enactive, the iconic,

and the symbolic. At first the child thinks in terms of actions.

His problem-solving abilities are limited because if he cannot

act out the solution, he cannot solve the problem. The child then

passes to the iconic stage of cognitive development in which he

can manipulate images. Whereas images are easier to manipulate

than actions, there is a kind of permanence about them which makes

it difficult to apply transformations to them. Since transformations

are at the heart of mathematical thinking, Bruner is of the opinion

that mathematical thinking does not occur before the child enters

this last stage of development. Bruner, as does Piaget, agrees that

the young adolescent is entering this final stage.

Dienes (1966) has also contributed to our understanding of

mathematical learning. He claims that the energy in play can be

directed so as to produce creative mathematical work. He distinguishes

three types of play. Manipulative play involves playing with the

actual objects we are studying. Representational play occurs when

the objects represent other objects or ideas. And rule-bound play
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involves following rules and games. These types of activities lead

to changing the rules of games, thus leading into playing around

with mathematical structures.

What do these theories offer in the way of instructional advice?

One theme runs through each of the theories: cognitive understanding

progresses from the concrete to the representational to the symbolic.

The implications for instruction seem clear: one should present

ideas in as concrete a form as possible before proceeding to more

abstract forms of the ideas. With respect to the theorems in this

unit, this means introducing the theorems with specific numerical

examples. It was therefore decided to present numerical examples

of the theorems and provide the students with the opportunity to

discover the generalizations of the theorems. Both Beberman (1964)

and Davis (1965) have found this procedure to be highly successful.

This provides us with a general mode of presentation, but

it does not answer the original question of how one teaches proof

to elementary school children. How does the student gain an

understanding of what constitutes a proof? Surely one doesn't

read him the definition quoted above from the Twenty-Fourth Yearbook

and expect him to understand it, for he probably has no conception

of what is meant by "sequence," "establishing," "assumptions of

logic," etc. And if he had not seen a proof before, he would

have no idea of what "previously proved propositions" means

(the definition is partly circular). Niven addresses himself to

this problem when he states (1961, p. 7):
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The nature and meaning of mathematical proof!" It is not
possible here and now to give a precise description of what
constitutes a proof, and herein lies one of the most puzzling
bugbears for the beginning student of mathematics. If the
nature of proof cannot be described or formulated in detail,
how can anyone learn it? It is learned, to use an oversimpli-

fied analogy, in the same manner as a child learns to identify
colors, namely, by observing someone else identify green
things, blue things, etc., and then by imitating what he has
observed. There may be failures at first caused by an in-
adequate understanding of the categories or patterns, but
eventually the learner gets the knack. And so it is with the
riddle of mathematical proof. Some of our discussions are
intended to shed light on the patterns of proof techniques,
and so to acquaint the reader with notions and methods of proof.
Thus while we cannot give any sure-fire receipe for what is and
what is not a valid proof, we do say some things about the
matter, and hope that the reader, before he reaches the end
of this book, will not only recognize valid proofs but will
enjoy constructing some himself.

A similar viewpoint guided the development of this unit on proof.

The purpose of the unit was to expose the students to several different

proofs; it was hoped that they could understand and learn the proofs,

but it was not expected that they would gain anything but a very

brief introduction to what constitutes a mathematical proof. A

mature understanding of proof will only come with time and repeated

exposure to proof.

Pedagogical considerations led to the .changing of one of the proofs.

The classical proof of the third theorem involves the use of subscripts

to denote an arbitrary set of prime numbers, {P1, P2, . Pn}.

Whereas most sixth-grade students are familiar with the use of variables,

as a rule they have not been exposed to the use of subscripts. From an

instructional point of view, a thorough treatment of subscripts would

be necessary in order that the students grasp the meaning of
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{Pi, P2, . . Pn}. Therefore, the proof was made less general by

considering the set to consist of consecutive prime numbers:

{2, 3, 5, . . P }, where P represents the largest prime number in

the set. This change also allows a clearer pedagogical approach to

the proof. Starting with the set {2,3 }, the technique used in

proving the general theorem can be employed to show that there is

another prime number. Form (2 x 3) + 1. Since 21(2 x 3) and 2+1,

the preceding theorem tells us that 21-((2 x 3) + 1). Similarly,

34(2 x 3) + 1). The Fundamental Theorem of Arithmetic can now be

applied to guarantee the existence of another prime number. The

same procedure can be repeated for the sets {2, 3, 5}, {2, 3, 5, 7 },

{2, 3, 5, 7, 11}, etc. The advantage of this approach lies in

the fact that the students can inductively discover the proof of the

general theorem by themseIveS. Furthermore, the students can

actually calculate the numerical expressions in order to directly

verify the procedure. Hence, these changes were made in the theorem

and a new task analysis was constructed (Figure 14).

FORMATIVE PILOT STUDY #1 (Step 3)

In January of 1969, a two-week formative pilot study was con-

ducted at Poynette, Wisconsin. Poynette is a rural community with

a population of approximately 1000 persons. Six sixth-grade

studens (three boys and three girls) with an average IQ score of

116 participated in the class. In all, ten fifty-minute classes were

held.
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Theorem 6: Given any set of prime numbers [2,3,5,...,P), there is

always another prime number.

STATEMENT REASON

1. (2x3x5x...xP) + I is a 1. Closure

whole number.

2. None of the primes in the 2. Theorem 4

given set will divide it.

3. If (2x3x5x...xP) 4 1 is a 3. Fundamental Theorem

prime, the result is of Arithemtic

established. If not, it is

a product of primes. In

either case, there is

another prime number.

PROVING
THEOREM 6

CONSTRUCT A NUMBER

AND SHOW THAT NONE OF

THE GIVEN PRIMES WILL

DIVIDE IT

APPLYING THE
CLOSURE

PROPERTY

APPLYING
THEOREM 4

APPLYING THE

FUNDAMENTAL
THEOREM OF
ARITHMETIC

Figure 14. Revised Task Analysis for Theorem 6
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The study was exploratory in nature and was conducted primarily

to gather information which would aid in a more careful task and

instructional analysis. An attempt was made to answer four basic

questions:

(1) Was it possible to motivate the need for mathematical

proof? In other words, was it possible to convince the students

that certain kinds of mathematical statements require a proof?

(2) Were the theorems appropriate? That is, were they of

interest to the students, could the students understand them, and

could the students learn to prove them?

(3) Was the instructional plan of proceeding from numerical

examples to the general theorem a valid procedure?

(4) How adequate was the task analysis? Were all the prerequisites

listed?

Seven lessons were presented to the students:

(1) Three meanings of the word "proof." The main purpose of

this lesson was to provide an overview for the unit by contrasting

proof by authority, proof by empirical evidence, and proof by

reasoning;

(2) The need for proof in mathematics. The purpose of this

lesson was to motivate the need for proof by torpedoing inductive

hypotheses;

(3) Prerequisites;

(4) Theorem 1;

(5) Theorem 2 and Theorem 3;
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(6) Theorem 4; and

(7) Theorem 6.

A journal account of the daily activities appears in Appendix A.

The following results wore obtained:

(1) The students were able to generalize theorems from particular

numerical examples;

(2) The students were able to learn the proofs of the first

three theorems;

(3) The students were unable to learn the proofs of Theorems 4

and 6. Two factors probably contributed to this failure: (a) in-

adequate time for instruction; and (b) inadequate analyses of the

prerequisite concepts involved in the theorems;

(4) Once the students had learned the proof of Theorem 1, four

of the six students were able to prove Theorem 2. After Theorem 2

was discussed, all six students were able to formulate and prove

Theorem 3;

(5) Torpedoing the inductive hypotheses was a successful

activity; and

(6) The students were interested in the theorems.

MATHEMATICAL REANALYSIS #1 (Step 4)

The results of the study indicated that two major changes had

to be made:

(1) Despite the fact that lack of time had prevented a thorough

presentation of Theorem 4 (eighth day of the journal), it was evident

to the investigator that a more detailed task analysis of the theorem
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was needed. In particular, the law of contradiction needed to be

analyzed into its component concepts. This was done and the

resulting task analysis is shown in Figure 15; and

(2) As described in the tenth day of the journal, the students

were unable to complete the proof of Theorem 6 because they had

been unable to apply The Fundamental Theorem of Arithmetic: they

were unable to argue both cases of the "or" statement. In an

attempt to eliminate this difficulty, the fundamental theorem was

replaced by the following theorem: Every whole number greater than

1 is divisible by some prime number. Since this result was to

be accepted without proof, it was called "Axiom 1." The new proof

and task analysis are shown in Figure 16.

No other changes were made in the mathematical components of

the unit.

INSTRUCTIONAL REANALYSIS #1 (Step 5)

Several aspects of the unit worked very well. The examples of

inductive reasoning which were torpedoed seemed to convince the

students that care must be exercised in accepting mathematical

statements. The students understood the theorems and were able to

discover generalizations from numerical examples. Hence the basic

instructional approach worked quite well.

However, there were several problem areas:

(1) The lesson on motivation was too far removed from the

presentation of the first proof. As described in the journal, the

lesson of motivation was presented on the second day of instruction;



APPLYING THE LAW OF
CONTRADICTION (GIVEN THAT
AN ASSUMPTION LEADS TO A
CONTRADICTION, CONCLUDE THAT
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Figure 15. A Task Analysis for Applying the Law of Contradiction

76



77

Theorem 6: Given any set of prime numbers {2,3,5,...,P }, there is

always another prime number.

STATEMENT REASON

(2x3x5x...xP) + 1 is a 1. Closure

whole number

2. None of the numbers in the 2. Theorem 4

given set will divide it

3. Since some prime number must 3. Every whole number greater

divi4e it, there is another than 1 is divisible by

prime number some prime number

TPROVING
HEOREM :1\\

CONSTRUCT A NUMBER AND
SHOW THAT NONE OF THE
GIVEN PRIMES WILL DIVIDE

IT

APPLYING THE

CLOSURE
PROPERTY

APPLYING
THEOREM 4

ARV V

APPLYING
AXIOM 1

Figure 16. Second Revision of Task Analysis for Theorem 6
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this was followed by two days of prerequisite skills; and the first

proof was not presented until the fifth day of the unit. The effect

of the torpedoing was somewhat diminished by the time the first proof

was presented.

It was decided to adopt a different sequence: first the

prerequisites, then the lesson on motivation, and then the first

proof. In this way it was hoped that the motivation would be more

immediately relevant to the proofs.

(2) The first proof was not presented until the fifth day of

instruction. This was so because three lessons preceded it. The

third lesson included prerequisites which were not necessary for the

proof the Theorem 1. It was decided to omit these prerequisites until

after the first three theorems had been proven.

(3) The first lesson, which was'ov the meanings of "prove,"

came before the students had any idea of what constituted a

mathematical proof. It was decided that the lesson would be more

meaningful if it were presented after the proofs of several theorems.

This would allow for a better comparison of the different meanings of

the word "prove." This would also move the first proof up one day

in the sequence.

(4) Teaching and drilling on the prerequisites consumed too much

class time. The prerequisites were reviewed to see if there were

some which were not absolutely essential to the proofs of the theorems.

Three changes were made in an attempt to conserve class time.

(a) The students had been given a list of whole numbers
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from 1 to 200 and were asked to use the sieve of

Eratosthenes to find all of the prime numbers less than

200. This activity was very time consuming because

several students made errors in applying the sieve. Since

most errors were made on numbers greater than 100, it

was decided to limit the exercise to all prime numbers

less than 100.

(b) The proofs of the first five theorems required the

following application of the left-hand distributive

law:

NP + NQ = N(P + Q).

The instruction 'included a general discussion of the

distributive law, including the right-hand distributive

law and applying the law in the reverse order, i.e.,

N(P + Q) = NP + NQ. It was decided to include only the

form which was used in the proofs.

(c) The proof of Theorem 6 requires the closure properties

for whole numbers under addition and multiplication.

A general discussion of closure under the four basic

operations was presented. It was decided to restrict

the discussion to those properties needed in the proof

of Theorem 6.

(5) The lecture method was used to introduce new concepts. In

the investigator's opinion there was a need to find other modes of

presentation which would help minimize the role of the teacher. The
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investigator created a sequence of illustrated stories which introduced

new ideas and provided drill on prerequisite skills. It was envisionec

that the stories would serve as a springboard for discussing the

major ideas of the unit.

(6) Two activities were added to the unit in an attempt to create

more student interest:

(a) The game of Prime was added to the unit (Holdan, 1969).

It is similar in nature to Bingo and provides the

students with drill on prime and composite numbers.

(b) An activity was designed which provided the students

the opportunity of experimenting with a desk computer.

The criteria for divisibility by 3 and by 9 have

been verified with small numbers. The computer would

permit Lhe students to verify these criteria with very

large numbers.

The revised unit consisted of twelve lessons.

I. Prerequisites for Theorem 1

A. Definition of divides

B. Distributive law

C. Substitution principle

II. The need for proof in mathematics

A. Partitioning circles

2
B. N N + 11

C. Limitations of inductive reasoning
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III. Theorem 1

IV. Theorem 2

V. Theorem 3

VI. Activity with desk computer to verity divisibility facts

VII. The meanings of "proof," including a discussion on the

nature of mathematical proof.

VIII. Prerequisites for Theorems 4 and 5

A. Contradiction

B. Law of the Excluded Middle

C. Law of contradiction

D. Indirect proof

IX. Theorem 4

X. Theorem 5

XI. Prerequisites for Theorem 6

A. Sieve of Erathosthenes

B. Game of Prime

XII. Theorem 6

FORMATIVE PILOT STUDY #2 (Step 6)

In February of 1969 a second pilot study was conducted at Huegel

Elementary School in Madison, Wisconsin. Huegel is a multiunit

school which utilizes flexible scheduling and individualized in-

struction. Two fifth-grade and five sixth-grade students (four

girls and three boys) volunteered to participate in a three-week

study. The students were from an ungraded classroom and had an

average IQ score of 115.
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The main purpose of the study was to further investigate those

components of the unit which had been unsuccessful in the first study.

Two more proofs were also added to the unit:

If 31(A + B), then 31(10A + B).

If 9 I(A + B), then 9 I(10A + B).

These are, of course, the criteria for divisibility by 3 and by 9 for

two-digit numbers. The plan was to teach the students to prove the

first result, and then ask them to prove the second without further

help. The task analyses for these theorems appear in Figures 17 and

18. A journal account of the study appears in Appendix B.

The main results were as follows:

(1) The students were able to learn the proofs of Theorems 1,

2, and 3;

(2) All of the students were able to prove Theorems 2 and 3 after

having learned the proof of Theorem 1;

(3) Five of seven students were able to learn the proof of the

divisibility criteria;

(4) When Theorems 1, 2, and 3 were combined on a test with the

theorems on divisibility criteria, many errors were made;

(5) Five of the seven students were able to prove Theorem 6;

(6) None of the students were able to learn the proof of

Theorem 4;

(7) As in the previous study, all of the students mastered the

prerequisite skills.

A
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If 31(A + B),

STATEMENT

then 31(10A + B).

REASON

1 . A + B = 3N 1. Definition of divides

2 . 10A + B = (9 + 1)A + B 2. 10 = 9 + 1

3. = 9A + A + B 3. Distributive law

4 . = 9A + 3N 4. Substitution

5. = 3(3A + N) 5. Distributive law

6. Therefore, 31(10A + B) 6. Definition of divides

/E
RESULT

PROVING

irm=11111

EXPRESSING 10A + B

AS A MULTIPLE OF 3
d

.ii

APPLYING THE APPLYING THE

DEFINITION OF DISTRIBUTIVE

DIVIDES LAW

APPLYING THE
SUBSTITUTION
PRINCIPLE

Figure 17. Proof and Task Analysis for the Criterion for Divisibility

by 3
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If 91(A + B),

STATEMENT

then 91(10A + B).

REASON

1. A + B = 9N 1. Definition of divides

2. 10A + B = (9 + 1)A + B 2. 10 = 9 + 1

3. = 9A + A + B 3. Distributive law

4. = 9A + 9N 4. Substitution

5. = 9(A + N) 5. Distributive law

6. Therefore, 91(10A + B) 6. Definition of divides

PROVING
E RESULT

EXPRESSING 10A + B AS
AS A MULTIPLE OF 9

APPLYING THE APPLYING THE APPLYING TH
DEFINITION OF DISTRIBUTIVE SUBSTITUTION
DIVIDES LAW PRINCIPLE

Figure 18. Proof and Task Analysis for the Criterion for Divisibility
by 9

84
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(8) The illustrated stories were enhusiastically received by

the students and were helpful in introducing new concepts; and

(9) The game of Prime and the activity with the desk computer

generated interest.

MATHEMATICAL REANALYSIS #2 (Step 7)

Despite the fact that the proof of Theorem 6 was presented the

day before the posttest was administered, five of the seven

students learned the proof. Hence the changes which were made in

the proof proved to be successful.

The proof of Theorem 4 was again too difficult for the

students. This was truein.spite of the fact that they had de-

monstrated a mastery of the prerequisites. As a result of quizzes

and student interviews, the author was convinced that the students

understood the nature of an indirect proof and the Law of Contradiction.

The problem appeared to be the length of the proof. It was con-

siderably longer than the other proofs. A search was made for a

simpler proof, and one was found. The proof employs Theorem 2 and

is simpler than the previous one. It should have been discovered

sooner, but the sequence of events in the planning stages of develop-

ment had hidden it from view. Theorems 1, 4, and 6 had been task

analyzed before the decision was made to add Theorems 2, 3, and 5

to the unit. Because sixth-grade students are not usaully exposed

to formal instruction on negative numbers, Theorem 1 could not be

directly applied in proving Theorem 4. Hence the long-winded proof
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for Theorem 4 became necessary. When Theorem 2 was added to

the unit, the investigator had failed to see how it could be

utilized in proving Theorem 4. A similar proof can be given

for Theorem 5 (Theorem 1 is used instead of Theorem 2). The

revised proofs and task analyses appear in Figures 19 and 20.

The proof eliminates the need for teaching the students how to

solve equations. Furthermore, it serves to illustrate how previously

proved results can be utilized in proving other results.

One other change was made as a result of the study. The proof

of Theorem 6 requires the closure properties of the whole numbers

under multiplication and addition. The students had a negative

reaction to this terminology and suggested that the closure properties

were "facts" about whole numbers under multiplication and division.

It was decided to define "facts" to represent "the closure properties

of whole numbers under multiplication and addition."

INSTRUCTIONAL REANALYSIS #2 (Step 8)

Several revisions were made in the instructional program.

(1) There was more discussion and fewer lectures than in the

first study. This was due largely to the stories. After the

students had read them, different students would be asked to summarize

the mathematical content of the story. Hence the students, rather

than the teacher, explained the concepts. Although it is difficult

to assess how much the stories contributed to the overall learning

which took place, they did aid in presenting new materials and were

very popular with the students. The investigator was constantly
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Theorem 4: If Ni-A and NIB, then Ni-(A + B).

STATEMENT REASON

1. Assume NI(A + B) 1. Assumption

2. NIB 2. Given

3. NIA 3. Theorem 2

4. But Ni-A 4. Given

5. Therefore, N1-(A + B) 5. Law of Contradiction

ASSUMING
THE

OPPOSITE

PROVING
THEOREM 4

APPLYING THE STRATEGY
OF AN INDIRECT PROOF
BY CONTRADICTION

4111MI101.

APPLYING
THEOREM 2

APPLYING THE

LAW OF
CONTRADICTION

Figure 19. Revised Proof and Task Analysis for Theorem 4



Theorem 5: If NI-A and NIB, then Ni.(A - B).

STATEMENT REASON

1. Assume NI(A - B) 1. Assumption

2. NIB 2. Given

3. NIA 3. Theorem 1

4. But NI-A 4. Given

5. Therefore, Ni.(A - B) 5. Law of Contradiction

I

PROVING
THEOREM 5

APPLYING THE STRATEGY
OF AN INDIRECT PROOF
BY CONTRADICTION

...... INIMINgi 1611111IM

ASSUMING APPLYING APPLYING APPLY4
THE THEOREM 1 THE LAW OF GIVEN

OPPOSITE CONTRADICTION FACTS

Figure20 Revised Proof and Task Analysis for Theorem 5

88
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implored to write new episodes. A decision was made to produce

additional episodes to cover more of the basic ideas in the unit.

The final product appears in Appendix C.

(2) The students had limited cognitive involvement with the

proofs. They would watch an explanation of a proof on the board,

and then try to reproduce it without looking at the board. The

investigator felt that there should be more opportunities for the

students to think about the proofs. As a result, several

additional exercises were constructed:

(a) Proofs were written with a number of statements and

reasons missing. The students would required

to fill in the missing steps;

(b) Proofs were written which contained errors. The

students would be required to examine the proofs,

find the errors, and made the necessary corrections;

and

(c) Application sheets were prepared. The students would

be given two divisibility facts and be asked to apply

a particular theorem to these facts. For example,

apply Theorem 2 to these facts:

NI(A + B) and NIB.

The correct response is NIA. In addition to illustratirg

how the theorem can be applied, it was hoped that such

exercises would help prepare the students for the proofs

of Theorems 4 and 5;
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(3) The students were able to learn the proofs of the divisi-

bility criteria, but when all of the theorems were included on the

same test, three of the students made errors. The reasons for one

proof would be cited as reasons for another. For these reasons, the

proofs of divisibility criteria were excluded from the unit;

(4) Two activities were used in an attempt to motivate the need

for mathematical proof: evaluating the expression N - N + 11 and

partioning the circle. The investigator felt that one activity would

adequately illustrate the point. Since the circle is not directly

related to the unit, it was excluded from the unit;

(5) When playing Prime, the investigator had to read the slips

several times so that everyone understood the conditions. It was

decided to use an overhead projector with transparencies for the next

study. The condition could then be seen by everyone; and

(6) The students evaluated (2 x 3 x x 13) + 1 = 30,031.

Since their list of prime numbers contained only primes less than

10,000, the students were unable to determine if this number was

prime. The University of Wisconsin Computing Center provided the

investigator, with a printout of all prime numbers less than 60,000.

The number was not on the list, for 30,031 = 59 x 509. This illus-

trates that the technique of multiplying the given primes together

and adding one does not always yield a prime number; it only guarantees

the existence of another prime number. This list of prime numbers

would be used in the next pilot study.

The students who had participated in the first two formative

studies were average and above average in academic abilities and
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had a mean IQ score of 116. Two factors led to a decision to develop

the unit for average and above-average students:

(1) In discussing the recommendations of the Cambridge Report,

Allendorerfer comments (1965, p. 693):

My third objection is that the report ccnpletely ignores

the very substantial problem of what mathematics should

be taught to the lower seveneighths of the ability group,

and in particular to the lower third,

The investigator is in partial agreement with this viewpoint and

thinks there is a strong possibility that such a unit may be

inappropriate for students with below-average academic abilities.

(2) The unit of instruction includes illustrated stories

which the students are required to read, and below-average students

quite frequently have reading problems.

Two other considerations led to a decision to limit the class

size to ten.

(1) Keliher (1967, p. 21) reports research studies in which

"small classes produced more educational creativity and promising

new procedures, children were more likely to receive individual

attention, and there was more variety in instructional methods."

(2) The teacher would be able to detect learning difficulties

as they arose so that corrective measures could be taken immediately.

The two pilot studies led the investigator to believe that ten

students would provide the optimal classroom atmosphere for the

unit.
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FORMATIVE PILOT STUDY #3 (Step 9)

The goal of an instructional program is to produce students who

can perform explicit behaviors. Many variables can influence the success

in achieving this goal. A systems approach to instruction views the

educative process in terms of these variables. If a desired goal

is to be achieved, attempts must be made to control and integrate

into an effective instructional program all of the components

which might conceivably affect the attainment of that goal.

Romberg (1968, p. 1) has defined "system" in the following way:

The word "system" as used in this paper refers to a "man-
made controlled functional structure." A "man-made
structure" means that the system has interdependent
components which call be changed or manipulated. "Controlled"
means that there is a feedback or monitoring procedure
which can be used to manage the system, and "Functional"
means that the system is goal oriented with a stated
purpose or intent.

For the purposes of this study the instructional system was

viewed in terms of five basic components: input, mechanism, feedback,

resources,, and output. The output consists of students with terminal

behaviors. The input consists of all the variables which enter the

classroom and affect the output. These variables are of two kinds:

those which are directly controllable by the experimenter and

those which are not. The experimenter can select the teacher, the

students, and the materials used in the classroom. On the other

hand, he does not necessarily have control over such factors as the

attitudes of the community, the faculty, or the parents, any or all

of which might affect the outcome of the instruction.
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The mechanism is a set of instructional plans to be employed

by the teacher. Feedback is an evaluation procedure which provides

data for altering the instuctional procedures, and resources

consist of the basic hardware without which the experiment would

not be possible: financial support for a classroom facility,

secretarial and duplication assistance, etc.

Figure 21 illustrates how the components of the system relate

to one another. The instructional system is viewed as an electrical

machine. The teacher, the students, the instructional materials,

and other variables affecting output are put into the machine,

these interact with the instructional program, evaluation provides

feedback which may result in new input, and the output is a group

of students with terminal behaviors. And, of course, the machine

will not operate unless it is plugged in, i.e., unless there are

resources to support the syst'em.

MECHANISM (Instructional program)

Content outline. Ten lessons were included in the unit for the

third pilot study.

I. Prerequisites for the first three theorems

A. Definition of divides

B. The substitution principle

C. The left-hand distributive law

II. The need for proof in mathematics

A. An example of inductive reasoning which yields a false

conclusion



IINSTRUCTIONAL MATERIALS

{STUDENTS

INPUT

iTEACHER

OTHER FACTORS,'

MECHANISM
(INSTRUCTIONAL PROGRAM)

/
RESOURCES

$

OUTPUT

Figure 21. Instructional System
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III. Theorem 1 and its proof

IV. Theorem 2 and its proof

V. Theorem 3 and its proof

VI. The meanings of "proof" and the nature of mathematical

proof

VII. Prerequisites for Theorems 4 and 5

A. Contradictions

B. Law of contradiction

C. Indirect proof

D. Law of the Excluded Middle

VIII. Theorem 4 and its proof

IX. Theorem 5 and its proof

X. Theorem 6 and its proof

Lesson plans. Using the experiences of the first two studies

as guidelines, the investigator prepared lesson plans. They were

then given to the teacher to study. After reading the lesson

plans, the teacher made a number of suggestions and requested that

the plans be written in greater detail. She wanted to know exactly

how to present each topic; this included specific examples to use,

questions to ask, comments to make, etc. Her unfamiliarity with

some of the basic concepts made it necessary to rewrite the lessons

in greater detail, and additional exercises were prepared.

The format of the plans included the following:

(1) a brief statement of the purpose of the lesson;
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(2) a statement of behavioral objectives;

(3) a list of the materials to be used in teaching the lesson;

(4) a description of the procedures to be used in teaching

the lesson; and

(5) one copy of each of the printed material to be used in

the lesson.

The lesson plans, together with a journal account of each

lesson may be found in Appendix C.

Procedures. Plans were made to follow the same basic procedures

as were developed in the previous studies. Student participation

was to be encouraged and the teacher was to entice the students to

contribute as much as possible to the development of the topics in

the unit. The students were to be given the opportunity to discover

the theorems from repeated numerical examples and to write the

proof of the general theorem after being given a proof for a

particular numerical example. In short, the students were to be

encouraged to play an active role in all learning situations, thus

minimizing the role of the teacher as a source of knowledge.

The results of the preceding pilot studies indicated that a

criterion of (80/80) was feasible with a small group of students.

Instruction was to aim at mastery: those students who failed to

master a skill were to receive individual help until they reached

criterion. Each mastery test was to be marked either "master" or

"non- master." These students who failed to master the tests were

to be given additional chances to become masters.
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While the teacher conducted the class, the investigator was

to be an observer and tape record each lesson. At the completion

of each day's lessons, the teacher and investigator planned to

analyze the lesson and make preparations for subsequent lessons.

The prepared lesson plans were tentative in nature and could be

changed in order to cope with learning problems encountered in

the classroom.

Feasibility. Plans were also made for testing the feasibility

of the unit. An attempt was made to answer three questions:

(1) Can the students display an understanding of the meanings

of the theorems? Two types of items were developed for determining

the students' understanding of the theorems. First, the students

were to be asked to write numerical examples which illustrate the

meaning of each of the first five theorems. For example, 3127

and 318, hence 3119 illustrates Theorem 5. Second, the students

were to be asked to apply the theorems to a given set of facts.

For example, given that 31111 and 3184, when asked to apply Theorem 2

the student should conclude that 31(111 84). These items were

included on the mastery tests for the lessons containing the first

five theorems.

(2) Can the students reproduce the proofs of the theorems?

This was the majck .._aavioral objective of the unit. The

mastery test for each theorem included a proof, and the posttest

asked the student to prove all six theorems.
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(3) Can the students display an understanding of the proofs?

Two measures were to be used to determine this. First, for each

theorem the students were to be tested on all of the prerequisites

involved in the proof of the theorem. Second, each student was to

be interviewed separately. He was expected to explain why each

reason was used in the proof. He was to be asked to state the

reasons in full when names or abbreviations were used as a reason.

For example, if the student used Axiom 1 as a reason, he was to

be asked to give a complete statement of the axiom.

The results obtained by these measures will be discussed in

Chapter IV.

Mastery tests. A mastery test was written for each of the

lessons which had explicit behavioral objectives. The tests appear

in Appendix C with the lesson plans. An (80/80) criterion was

established for each mastery test. When eight students mastered

the tasks on the test, theciass was to proceed to the next lesson.

Those who did not master the concepts were to be given individual

help.

Pretest-posttest. A pretest-posttest was written which contained

both the proofs of the theorems and the prerequisites for the proofs.

The prerequisites were included to help determine instructional

strategy. That is, the performance.of the students would indicate

which of the prerequisites needed to be taught. The posttest would

indicate how successful the unit of instruction was in teaching

prerequisites.



The proofs were included on the pretest-posttest to measure

the main behavioral objectives of the unit. A copy of the test

appears in Appendix E. In addition to the proofs, it contains

eight prerequisites:

(1) applying the left-hand distributive law;

(2) recognizing the validity of the closure property for

the set of whole numbers under addition a.id multiplication;

(3) applying Axiom 1;

(4) applying the substitution principle;

(5) applying the definition of divides;

(6) applying the Law of Contradiction;

(7) identifying prime numbers; and

(8) recognizing that repeated instances of a given principle

does not constitute proof of that principle.

INPUT
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The teacher. A certified elementary school teacher, whose duties

as an employee of the Wisconsin Research and Development Center for

Cognitive Learning included teaching experimental classes, was

assigned to teach the unit. She assisted the investigator in

planning the study.

Her basic teaching philosophy is consistent with the procedures

developed in the first two pilot studies by the investigator. It

is her belief that the authoritarian role of the teacher should be

minimized while encouraging children to take a more active role

in learning.
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Her preparation in mathematics included high school courses in

Algebra (2 years), plane Geometry, solid Geometry and Trigonometry,

and college courses in College Algebra, Analytic Geometry, two

semesters of Calculus, and a modern math course for teachers. Hence,

she was better prepared in mathematics than the average elementary

school teacher. However, she had not been exposed to extensive

experience with proof and was not very familiar with the deductive

and axiomatic nature of mathematics. Therefore, it was necessary

for the investigator to teach the unit on proof to the teacher.

Four weeks before the third pilot study was to be conducted,

The investigator discussed the unit with the teacher. The first

priority was to teach her the proofs of the six theorems. Three

sixty-minute sessions were held during the next ten days. At the

end of this time, the teacher was familiar with the proofs. The

sequence of six theorems was used to illustrate the nature of

mathematical proof to the teacher. Eight more sessions were held

before the experiment began.

The students. The third formative pilot study was conducted

at Lake Mills Middle School in Lake Mills, Wisconsin. Lake Mills

is a rural community of about 3000 people and is located 25 miles

from Madison, the capital of Wisconsin and the home of the University

of Wisconsin. While originally being a farming community, the

population of Lake Mills is now predominantly composed of salaried

luwer middle-class citizens.



101

The community is located on an Interstate highway and many

of the citizens commute to Madison to work. In addition, the

community is linked to Madison via television and radio. Hence,

Mad; son has a strong influence upon the community. Except for a

few migratory farm workers, there are no racial minority groups

in Lake Mills.

The middle school contains sixth-, seventh-, and eighth-grade

students. The students had a different teacher for each subject.

Class periods were approximately 44 minutes in duration.

The three sixth-grade mathematics classes were taught by the

same teacher. Since the classes met at different hours of the

day, it was not possible to randomly select students from the

total sixth-grade population of the school. The selection was

further restricted by the fact that the unit was being developed

for college-capable (average and above-average) students. One

class was selected at random and the ten best mathematics students

were selected from this class to be in the Experimental Group.

Seven girls and three boys were selected to participate.

A Control Group was selected from the other two math classes

by matching procedures. Sex, Henmon-Nelson IQ scores, grades in

mathematics, and teacher appraisal were the variables considered.

The teacher appraisal included such factors as work habits, attitudes

towards mathematics, etc. The Experimental Group had a mean IQ score

of 117.6 and the Control Group had a mean IQ score of 121.3.
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To gather more data on the Experimental and Control Groups,

the Mathematics and Reading sections of the Sequential Tests of

Educational Progress (STEP form 4A) were administered after the

study was completed. On the Mathematics section the mean

percentile score was 83.9 for the Experimental Group and 86.2

for the Control Group. On the Reading section, the mean

percentile score was 73.4 for the Experimental Group and 68.5

for the Control Group. A summary of the data may be found in

Appendix F.

The results of the pretest also gives some information on the

relative abilities of the two groups. The test consisted of twenty -five

items, six proofs and nineteen prerequisites. There were five

items on the distributive law, one item on closure, five items on

substitution, five items on divisibility, one item on p0.me numbers

(ten numbers were given and the students were to identify those

which were primes) one item on Axiom 1 (the students were asked to

give a prime divisor for each of seven numbers), and one on inductive

reasoning.

The Experimental Group averaged 29% on the prerequisites and, as

expected, 0% on the proofs. The Control Group averaged 30% on the

prerequisites and 0% on the proofs. The results indicated that the

students in the Experimental Group were fairly competent on Axiom 1,

the closure property of whole numbers, and prime numbers. Table 1

summarizes the results of the pretest and indicate: how similarly

the two groups performed.
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TABLE 1

Results of the Pretest

Experimental
Group

Control

Group

Distributive law 5/50 1/50

Axiom 1 51/70 46/70

Closure 7/10 9/10

Substitution 25/50 29/50

Divisibility 12/50 13/50

Law of Contradiction 0/10 0/10

Prime numbers 86/100 79/100

Induction 0/10 0/10

Proofs 0/60 0/60

Note. The entry in each cell gives the ratio
total number of correct responses to the
total number of items.

Materials. The instructional materials for each lesson are

listed below. The printed materials may be found with the lesson

plans in Appendix C.

(1) The proof of each theorem written on a separate poster.

Their function is to aid the teacher while discussing the

proofs. They were to be placed where the students could

see them much of the time;
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(2) illustrated stories which present homework exercises and

introduce new ideas;

(3) an Underwood-Olivetti 101 desk computer for verifying

Axiom 1 and divisibility criteria;

(4) an overhead projector to aid in playing Prime; and

(5) a variety of practice and exercise sheets.

Other factors. Many other factors may influence what goes

on in the classroom; no class exists in isolation. An attempt

was made to create a positive school atmosphere for the

experiment:

(1) A brief description of the purpose and nature of the

experiment was mailed to each parent whose child was involved

in the experiment;

(2) The principal and the regular sixth-grade math teacher

were thoroughly briefed on the experiment; and

(3) Both the experimenter and the teacher made efforts to

communicate with the staff. Frequent visits to the faculty .

lounge before and after class helped other faculty members and

the custodial staff gain a better understanding of the experiment.

While is it not possible to measure the effect of these attempts,

no negative responses were received from any of the faculty members.

FEEDBACK (EVALUATION)

Feedback was to come from three basic sources:

(1) The classroom observations of the teacher and investigator

The small group of stidents were to be encouraged to express

their opinions at all times so that learning difficulties could be
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detected as they arose. While the students worked exercises at

their desks, the size of the class would permit the teacher to

circulate among the students and observe their performances.

The lessons would also be recorded on tape. The lessons could,

therefore, be evaluated by listening to the tapes;

(2) Student interview. The investigator was to interview the

students in an attempt to determine how well they understood

the proofs of the six theorems. The students were to be asked

to explain each reason in the proof; and

(3) Mastery tests. The behavioral objectives for each lesson

were to be measured by lesson mastery tests. These are included

with the lesson plans in Appendix C.

Data from these sources were to aid the teacher and investigator

in making decisions. If the (80/80) criterion was not met, or if

there was evidence that a lesson had misqed the mark, recycling

would be necessary. Iteration was to continue until mastery was

achieved.

OUTPUT.

The investigator was fairly confident that the students would

be able to learn most of the proofs as they were presented in each

lesson. Of greater importance was whether or not they would be

able to keep the various proofs straight when confronted with

proving all of them at the same time. Hence the unit had one

major behavioral objective:
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Given the statements of the six theorems, the student will

write a correct proof for each of them.

This objective was to be measured on a pre- and posttest which

was written for the experimental aspect of the study.

The desired output also included features which would not be

measured in behavioral terms. For example, it was hoped that the

students will gain some understanding of mathematical proof. A

major premise of this study is that an "understanding" of proof

develops gradually as one is exposed to more and more examples

of proof. Hence, it is not an all-or-nothing acquisition which is

readily measured. The ultimate test for this objective (understanding

of proof) will require a longitudinal study. This will be discussed

in the concluding chapter of this paper.

RESOURCES

The resources for this study were prOvided by the Lake Mills

Middle School and the Wisconsin Research and Developemtn Center for

Cognitive Learning. The school provided the classroom. The Center

provided secretarial and duplicating help, the services of the

experimental teacher, and the transportation to and from Lake Mills.

TEACHING THE UNIT

A journal account of the third formative pilot study appears

in Appendix C. Most of the lessons went as planned. When the

teacher thought the students were adequately prepared, a mastery

test was administered to measure the objectives of each lesson

(Appendix D contains the results of the mastery test). The

students failed to reach criterion on two occasions,
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and further instruction was required to reach criterion (see the

journal account for Thursday, April 17 and Wednesday, April 30

in Appendix C).

Iteration (or recycling) was required on one other occasion.

This was due to the fact that the need for mathematical proof was

not properly motivated (see the journal accouhc for Monday, April 21).

As a result of the difficulties which were encountered with this

lesson, changes were made in the daily plan of operations. The

teacher role-played and practiced teaching each lesson to the

investigator before presenting it to the students. In all, this

meant that about two hours of preparation were required for each

lesson. This procedure was helpful and the remainder of the lessons

went much more smoothly.

In addition to the main objectives of the unit, the study

examined two other aspects of the students' behaviors. First,

the basic pedagogical approach to each of the theorems was to

encourage the students to: (1) formulate the statement of each

theorem from numerical examples; and (2) construct the proof of

the general theorems from proofs for particular numerical examples.

Classroom observations indicated that all of the students were able

to perform these tasks. No objective data was collected on these

tasks.

Secondly, three proofs were added to the original unit in order

to determine if the students were able to transfer their knowledge

of one proof to the proof of a similar theorem. After Theorem 1
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had been presented, the students were given the opportunity to

prove Theorems 2 and 3 without further instruction. The journal

of Lessons 4 and 5 describes the procedures which were used. Eight

students were able to prove Theorem 2 without any hints. The

remaining two students wrote correct proofs when the teacher

suggested that the proof was similar to the proof of Theorem 1.

All ten students were then able to write correct proofs for Theorem 3.

After Theorem 4 was presented, the students were asked to write

a proof for Theorem 5. The journal for Lesson 8 details the

procedures which were followed. The proof is the same as the

proof of Theorem 4, except that Theorem 1 must be applied instead

of Theorem 2. Each student applied Theorem 2 instead of Theorem 1.

Otherwise, all of the proofs were correct. When the teacher suggested

that the students think through each step in the proof, two students

made the necessary correction. Six more students made the

correction when the teacher reviewed the strategy for Theorem 4.

Two students had to beEhown their mistakes.

One lesson was omitted from the third formative study. Since

the students had been exposed to prime and composite numbers, and in

the interest of conserving time, the lesson on prime numbers was not

presented. The definitions of prime and composite numbers were

given and the game of Prime was played, but the sieve of Eratosthenes

was omitted.

The pretest, the instruction, and the posttest required

eighteen days to complete. At the conclusion of the study the
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students were given a certificate (See Appendix C), letters were

mailed to each of the students' parents informing them of their

child's progress, and a formal report was given to the principal

of the school.



Chapter IV

RESULTS

This chapter presents the results which are pertinent to deter-

mining the feasibility of the unit. The results are presented in three

sections: prerequisites, proofs, and other behaviors. The validity

and reliability of the pretest-posttest are discussed after the results

for the tests are presented.

PREREQUISITES

The pretest-posttest results for each prerequisites skill are

presented in the following pages. Tables are used to summarize the

results. In the tables, "Ratio" means the ratio of the total number

of correct responses to the total number of items on the test. For

example, in Table 2 the ratio 5/50 for the Experimental Group on the

pretest means that there were five correct responses out of a total

of fifty total responses. The "Percent" column expresses each ratio

in terms of the percent of correct responses. For example, 5/50 is

10 percent.

Distributive law. Only one student was able to apply the left-

hand distributive law on the pretest. Hence, the Experimental Group

responded correctly to five of the fifty items. On the posttest,

the Experimental Group responded correctly to all fifty instances of

110
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the distributive law. On the pretest the students in the Control

Group responded correctly to one item. On the posttest, one student

answered all five items correctly, accounting for the only correct

responses by the Control Group. Table 2 summarizes the results.

TABLE 2

Distributive Law

Ptetest Posttest

Ratio Percent Ratio Percent

Experimental
Group

5/50 10 50/50 100

Control

Group

1/50 2 5/50 10

Axiom 1. Axiom 1 states that every whole number greater than one

is divisible by some prime number. The students were given seven whole

numbers; for each they were to write a prime number which divided it.

Approximately one month before the experiment, the students had been

exposed to a unit on prime numbers. On the pretest, seventy-three

percent of the items were answered correctly by the Experimental Group

and sixty-six percent by the Control Group. On the posttest, the

Experimental Group responded correctly to ninety-six percent of the

items, and the Control Croup responded correctly to seventy-three

percent of the items. It should be recalled that the lesson on prime

numbers was not presented to the Experimental Group during the

experiment. The results are summarized in Table 3.
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TABLE 3

Axiom 1

Pretest Posttest

Ratio Percent Ratio Percent

Experimental
Group

51/70 73 67/70 96

Control
Group

46/70 66 51/70 73

Closure properties. The students in the Experimental Group

answered seven of the ten items correctly on the pretest and all of

the items correctly on the posttest. The students in the Control

Group answered nine correctly on the pretest and seven correctly on

the posttest. The results are summarized in Table 4.

TABLE 4

Closure

Pretest Posttest

Ratio Percent Ratio Percent

Experimental
Group

7/10 10 10/10 100

Control
Group

9/10 90 7/10 70

Substitution. The students had some prior experience with substi-

tution. On the pretest the students in the Experimental Group responded

correctly to twenty-five of the fifty items; the students in the Control

Group responded correctly to twenty-nine of the items. On the posttest
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the students in the Experimental Group responded correctly to forty-

eight of the items and the students in the Control Group answered

twenty-three correctly. Table 5 summarizes the results.

TABLE 5

Substitution

Pretest Posttest

Ratio

p.

Percent Ratio Percent

Experimental
Group

25/50 50 48/50 96

Control
Group

29/50 58 23/50 46

Definition of Divides. This was one of the most crucial concepts

in the unit. The two groups performed quite similarly on the pretest.

The students in the Experimental Group answered twelve of the fifty

items correctly and the students in the Control Group answered

thirteen correctly. On 1) posttest the students in the Experimental

Group answered forty-nine of the items correctly and the students in

the Control Group answered twelve of them correctly. Table 6 summarizes

the results and it appears on the following page.
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Definition of Divides

Pretest Posttest

Ratio Percent Ratio Percent

Experimental

Group

12/50 24 49/50 98

Control

Group

13/50 26 12/50 24

Law of Contradiction. None of the students in either group were

able to answer the item correctly on the pretest. Nine of ten students

in the Experimental Group were able to do so on the posttest, but none

of the students in the Control Group were able to answer it correctly.

Table 7 summarizes the results.

TABLE 7

Law of Contradiction

Pretest Posttest

Ratio Percent Ratio Percent

Experimental
Group

0/10

I

0 9/10 90

Control

Group

0/10

I

0 0/10 0

Prime numbers. Both groups were fairly proficient at identifying

prime numbers. The students in the Experimental Group answered eighty-

six of the 100 items correctly and the students in the Control Group

answered seventy-nine correctly on the pretest. Although the lesson
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which had been prepared on prime numbers was not presented to the

Experimental Croup, these students answered ninty-five of the 100

items correctly on the posttest. The students in the Control Group

responded correctly to sixty-nine of the items on the posttest. The

results are shown in Table 8.

TABLE 8

Prime Numbers

_ .

Pretest Posttest

Ratio Percent Ratio Percent

Experimental
?Troup

86/100 86 95/100 95

Control
3roup

79/100 79 69/100 69

Inductive reasoning. None of the students were able to answer

the item correctly on the pretest, but nine of the ten students in

the Experimental Group answered it correctly on the posttest. Table

9 summarizes the results.

TABLE 9

Inductive Reasoning

Pre test Posttest
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Ratio Percent Ratio Percent

Experimental
Group

0/10 0 9/10 I 90

Cofitrol

Group

0/10 0 0/10
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PROOF

As presented in the unit on proof developed in this study, a

valid mathematical proof is comprised of a sequence of statements

which establish the validity of the result. An acceptable reason

must also be given for each statement. Hence, writing a mathemati-

cal proof is a complicated task. As a result, to score a proof as

either "acceptable" or "not acceptable" can be misleading. For

instance, one student may complete all but one step of a proof and

another may not be able to write any of the proof. If the proofs

were scored on an all-or-nothing basis, both students would receive

the same score. In the process, much information is lost concerning

the relative abilities of the two students. Therefore, Table 10

summarizes the results of the proofs in two ways. First, the ratios

of the total number of correct proofs to the total number of proofs

are given. Second, the ratios of the total number of correct steps

to the total number of steps are given. For example, the proof of

Theorem 1 is comprised of four statements and four reasons; hence,

there are eight steps involved and the proof is scored on a basis of

eight points.

None of the students were able to prove any of the theorems on

the pretest. Three students in each group did make an attempt at

proving the theorems. For Theorem 1, one student wrote, "It's true

because you are adding them". Another student wrote, "It's true

because you are distributing the N to a B and an A". A third stu-

dent gave a numerical example as proof. The students in the



Control Group were also unable to prove any of the theorems on the

posttest.

TABLE 10

Proofs

Pretest

--

Posttest

Ratio:

correct
prOofs

Ratio:

correct

"steps

Ratio:

correct

proofs

Ratio:

correct
steps

Experimental
Group

0/60 0/500 58/60 498/500

Control
Group

0/60 0/500 0/60 0/500

The results reveal almost total mastery of the proofs by the

students; in the Experimental Group. Only one student made an error:

she missed the proofs of Theorems 4 and 5 because she cited the

wrong theorems as reasons. When asked to explain the proofs, she

explained that she had confused the numbers of the theorems.

SUMMARY OF PRETEST-POSTTEST SCORES

Table 11 summarizes the results of the pretest-posttest. On

the pretest, the students in the Experimental Group scored twenty-

nine percent on the prerequisites and zero percent on the proofs.

The students in the Control Group scored thirty percent on the pre-

requisites and zero percent on the proofs. Hence, the performance

of the two groups was quite similar. On the posttest, the students

in the Experimental Group scored ninety-six percent on the pre-

requisites and ninety-seven percent on the proofs. The students
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TABLE 11

Summary of Pretest-posttest Results

Pretest Posttest

Prerequisites Proofs Prerequisites Proofs

Experimental
Group

Mean number
of correct
responses

5.67 0 18.0 5.8

Percent of
correct

responses

29 0 96 97

Variance 2.67 0 .97 .40

.

Contrcl

Group

Mean number
of correct
responses

5.75 0 6.00 0

Percent of
correct

responses

30 0 32 0

Variance 1.72 0 3.39
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in the Control Group performed about the same as on the pretest.

Their mean number of correct responses increased from 5.75 to 6.00,

or from 30 to 32 percent. This increase was due to the performanc7,

of one student whose score increased from 6 to 11 (she had learned

the distributive law).

The variances on the pretest were low because the scores were

low. As would -be expected under the conditions of mastery learning,

the variance on the posttest for the Experimental Group decreased

from 2.67 to .40. Table 11 appears on the preceding page.

ANALYSIS OF VARIANCE

The large gains made by the Experimental Group are clearly

significant. Nonetheless, the data were subjected to an analysis of

variance to verify what appears to be obvious (Finn, 1967). Since the

students in the Control Group were unable to prove any of the theorems,

the variance for that portion of the test is zero. Hence, the data on

proofs were not compared. The data on prerequisites were subjected

to several tests. There were no significant differences between the

Experimental and Control Groups when compared on the pretest grand

means for prerequisites (p less than 0.8374). Similarly, there were

no significant differences between the two groups when compared on

Henmon-Nelson IQ scores and Sequential Tests of Educational Progress

(STEP) scores for mathematical and reading achievement (p less than

0.3222). These results indicate that the two groups of students were

fairly similar in nature.

The two groups were also compared on the posttest grand means



for prerequisites. An F ratio of 139.4438 was highly significant

(p less than 0.0001). To take into account differences which

existed between the two groups, two analysis of covariance tests

were performed. With pretest scores eliminated, the F ratio in-

creases to 177.8154. With IQ scores, math achievement scores,

and reading achievement scores eliminated, the F ratio is 164.6214.

In each case the p value is less than 0.0001. This is as expected,

for the Control Group had higher grand means on the IQ, mathematics

achievement, and pretest scores than the Experimental Group. Thus,

when these measures are taken into consideration, the results be-

come more significant.

Therefore, the analysis of variance confirms the fact that the

results are highly significant

THE RELIABILITY AND VALIDITY OF THE PRETEST-POSTTEST

Most standardized tests can be classified as "norm-referenced"

tests. A norm-referenced test is used to ascertain an individual's

performance in relationship to the performances of other individuals

on the same test. Such tests are used to make decisions about in-

dividuals.

The pretest-posttest used in this study is a "criterion-

referenced" test. A criterion-referenced test is used to ascertain

an individual's performance with respect to some criterion. Thus,

the individual's performance is compared with some established

criterion rather than with the performances of other individuals.

Such test are useful in making decisions about instructional programs.
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Popham and Husek (1969) have recently discussed the difficulties

involved in applying the classical concepts of reliability and

validity to criterion-referenced tests. Since the meaningfulness of

a norm-referenced test score is basically dependent on the relative

position of the score in comparison with other scores on the same

test, test reliability is based on the variability of test scores.

The greater the variability, the easier it is to rank individuals.

On the other hand, variability is irrelevant with criterion-refer-

enced tests. The meaningfulness of a criterion-referenced test

score is not dependent on a comparison with other scores; it is

dependent on a comparison with an established criterion. Popham and

Husek (1969, p. 5) make the following comments concerning test reli-

ability:

...although it may be obvious that a criterion-
referenced test should be internally consistent,
it is not obvious how to assess the internal con-
sistency. The classical procedures are not
appropriate. This is true because they are de-
pendent on score variability. A criterion-
referenced test should not be faulted if, when
administered after instruction, everyone obtained
a perfect score. Yet, that would lead to a zero
internal consistency estimate, something measure-
ment books don't recommend.

In order to examine the classical concept of reliability as it

applies to a criterion-referenced test, Hoyt reliability coefficients

were computed (Baker, 1966). These are presented in Table 12. Since

all of the students in the Experimental Group had high posttest scores,

and all of the students in the Control Group had low posttest

scores, one would expect high measures of internal consistency if
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the scores for both groups are considered together. This did occur:

the reliability for the test on prerequisites was 0.9599 and the

reliability for the test on proofs was 0.9912. However, when the

test scores for the two groups are considered separately, lower

reliability coefficients are obtained. Of particular interest are

the coefficients for the Experimental Croup. On prerequisites, the

pretest reliability was 0.7111 and the posttest reliability was

0.3589. On proofs, the pretest reliability was 0.0000 (there were

no correct responses) and the posttest reliability was 0.6000.

These results confirm the viewpoint expressed by Popham and

Husek; that is, a criterion-referenced test administered after an

instructional treatment will have & low measure of internal consis-

tency.

Popham and Husek (1969, p. 6) also point out that the validity

of a criterion-referenced test should be based on the content of the

items on the test:

Criterion-referenced measures are validated primarily
in terms of the adequacy with which they represent
the criterion. Therefore, content validity approaches
are more suited to such tests. A carefully made
judgement, based on the test's apparent relevance
to the behaviors legitimately inferable from those
delimited by the criterion, is the g.neral procedure
for validating criterion-referenced measures.

The pretest-posttest used in this study consisted of twenty-

five items, six proofs and nineteen prerequisites. The items are

based upon the objectives of the instructional unit. In fact, in-

struction aimed at teaching the behaviors included on the test.

Hence, the test has content validity.
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TABLE 12

Hoyt Reliability Coefficients

Pretest Posttest

Experimental
Prerequisites

0 7111 0.3589

Experimental
Proofs

0.0000 0.6000

Control

Prerequisites
-0.0879 0.7708

Control
Proofs

0.0000 0.0000

0.9599Combined

Prerequisites
0.5590

Combined
Proofs

0.0000 0.9912

Note: "Combined" means considering the Experimental Group and the
Control Group together.

OTHER BEHAVIORS

Data were collected by several other means to help assess the

feasibility of the unit of instruction.

The meanings of the theorems. In an attempt to determine if

the students understood the meanings of the theorems, the students

were asked to perform two tasks: (1) to give numerical examples to

illustrate the meanings of the theorems; and (2) to apply the theorems

to given divisibility facts. These items were included on the

mastery tests for each of the first five theorems. These tasks

were performed without error.

Understanding the proofs. Two measures were used to determine

how well the students understood the proofs of the theorems:
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(1) a knowledge of prerequisites; and (2) the ability to explain

and defend the proofs in an interview situation. The results of the

prerequisites were reported earlier in the chapter. The interviews

were more revealing. Nine of ten students were able to satisfac-

torily explain and defend their proofs of Theorems 1, 2, and 3,

seven were able to do so for Theorems 4 and 5, and eight were able

to do so for Theorem 6.

CONCLUDING REMARKS

This chapter has reported those results which are directly re-

lated to determining the feasibility of the unit of instruction on

proof. Thy: development and testing of the unit required nine

sequential steps, and many of the things which happened along the

way are not reported in this chapter, In addition to in::erpreting

the results reported in this chapter, many of these other results

will be discussed in Chapter V.



Chapter V

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR FURTHER STUDY

SUMMARY

Deduction is at the very heart of the modern conception of

mathematics, yet existing elementary school mathematics programs

do not include a discussion of proof and deduction. Hoping to

remedy this situation, The Cambridge Conference of School Math-

ematics recommended in 1963 that proof be presented in the

elementary school curriculum. The findings of many psychologists

suggest that sixth-grade students possess the cognitive structures

necessary for a study of proof. These considerations suggest that

the recommendations of the Cambridge Conderence be tested.

This study was designed to gather information concerning

the ability of sixth-grade students to learn mathematical proofs.

Its purpose was twofold: (I) to demonstrate that the curriculum

development model advocated by Romberg and DeVault can be suc-

cessfully applied to develop a unit on proof for use with average

and above average sixth-grade students; and (2) to use this unit

to test the feasibility of presetting selected proof material to

sixth-grade students.

The study carried the development of the unit through the

first two phases of the modef. Nine sequential steps, including
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three pilot studies, were involved in developing the unit. The

final unit contained six theorems.

An experiment was conducted in conjunction with the third

pilot study. Ten average and above average students were selected

from an intact classroom and a Control Group was selected by

matching procedures. A Nonequivalent Control Group Design was

used. Every student in the Experimental Group mastered all of the

behavioral objectives of the unit. The results of the pretest-

posttest are summarized in Table 13.

TABLE 13

Summary of Pretest - Posttest Results

Pretest Posttest

Prerequisites Proofs Prerequisites Proofs

Experimental 29 0 96 97

Control 30 0 32 0

Note. - The entries in each give the percent of correct responses.

An analysis of variance was performed on the posttest scores

on prerequisites and the results were highly significant. When

pretest scores, Henmon-Nelson I. Q. scores, and Sequential Test of

Educational Progress (STEP) scores on mathematical and reading

achievement are used as covariates, the significance is increased.



LIMITATIONS OF THE STUDY

The results of the experiment must be approached with extreme

caution. The failure to obtain a random sample, the rural charac-

terestics of the community, the ideal conditions under which the

unit waF presented, and the existence of a Hawt4orne effect combine

to produce a highly unique set of circumstances. Hence, the major

limitation of this study is its lack of generalizability.

The formative development of the unit is in the initial pilot

phase. Further pilot examinations and validation are needed before

the ro,:ults can be safely generalized. The conclusions which fol-

low should be interpreted with this limitation in mind.

CONCLUSIONS

This study had two major purposes. Correspondingly, the con-

clusions are reported in two sections, those related to the devel-

opment of the unit, and those related to the experiment.

Conclusions Related to the Experiment

(1) The main purpose of the study was to test the feasi-

bility of presenting proof materials to sixth-grade students.

Three basic questions were asked:

(a) Can the students demonstrate an understanding

of the theorems? The results as reported in

Chapter IV indicate that the students under-

stood the meanings of the six theorems.

(b) Can the students reproduce the proofs of the

theorems? The results of the mastery tests
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and the posttest show that the students

learned the proofs of the six theorems.

(c) Can the students demonstrate an understanding

of the proofs of the theorems? The results

showed that nine students understood the

proofs of theorems 1, 2, and 3, that seven

students understood the proofs of theorems

4 and 5, and that eight students understood

the proof of theorem 6.

Therefore, the conclusion is that the feasibility of the unit

is established for a particular group of average and above average

students under somewhat ideal conditions.

(2) The results show that the Experimental and the Control

Groups performed quite similarly on the pretest. Neither group

was able to prove the theorems, and there was only 1% difference

between their performances on the prerequisites. The difference

on the pretest scores were non-significant. On the posttest, the

Control Group showed very little gain: they were still unable to

prove the theorems and there was a 2% increase in their perfor-

mance on prerequisites. The Experimental Group answered 96% of

the prerequisite items correctly and proved 97% of the theorems.

Hence, the Experimental Group made gains which were both practi-

and statistically significant.

The Control Group performed as expected. The increase in the

variance from the pretest to the posttest for the Control Group



can be readily explained. Several topics in the unit had been

presented to all the sixth graders in the school earlier in the

year: the distributive law, prime and composite numbers, substi-

tution and evaluation. While the experiment was being conducted

the Control Group attended their regular math class where they did

not review these concepts. They studied operations with rational

numbers. Hence, the passage of time would tend to increase the

variance of a test on these concepts.

As expected, the variance for the Experimental Group decreased

as a result of instruction. Teaching for mastery tends to decrease

the variability of performances. Almost total mastery was achieved

on both the proofs and the prerequisites.

Therefore, the second conclusion concerns the pretest-posttest

gains made by the Experimental Group: what accounts for this gain?

The very nature of the study would seem to rule out most sources

of internal invalidity, for instruction aimed at teaching and

measuring specific behaviors, and recycling was repeated until the

students had mastered those behaviors.

Nevertheless, a Non-equivalent Control Group Design was used

to rule out as many competing hypotheses as was possible. Camp-

bell and Stanley (1968, p.13) state that this design controls for

the main effects of history, maturation, testing, instrumentation,

selection, and mortality. Since matching procedures were used in

selecting the Control Group, and since the pretest means of the

two groups were nearly identical, main effects due to regression
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can be excluded as a source of internal invalidity.

Another competing hypothesis is that the learning resulted

from activities which took place outside of the classroom. For

instance, perhaps the actual classroom instruction was ineffective

and the students learned the material by studying at home. This

was not the case with at least four of the six theorems, for the

students actually learned, four of the proofs during the periods in

which the proofs were presented.

Therefore, the conclusion is that the pretest-posttest gain

was due to one of two factors: (a) the instructional treatment;

or (b) a pretest-treatment interaction. The investigator has no

way of determining between the two. However, given the size of

the gain by the Experimental Group, the investigator is certain

that a large proportion of the gain was due to instruction.

(3) The third conclusion is that mastery learning was a

successful operational procedure. Each student attained mastery

of every behavior skill. The small class size enabled the teacher

to constantly monitor the progress of each student, and individual

help was given when necessary. When the teacher was confident that

the students had learned the behaviors of a lesson, a mastery test

was administered and mastery was usually attained.

More importantly, the students reacted very positively to the

idea of mastery learning. This was particularly true of three of

the less gifted students who normally receive grades of. B or C in

mathematics. These students, realizing that it was possible to
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receive an A for the unit, were usually the first students to learn

a proof.

(4) The illustrated stories served three functions:

(a) From the students' point of view they provided

an interesting context for drill and practice

exercises;

(b) From the teacher's point of view they provided

an effective way for presenting new topics; and

(c) They were enthusiastically received by the stu-

dents and contributed to a good classroom morale.

Therefore, the conclusion is that the illustrated stories

made a valuable contribution to the overall success of the instruc-

tional unit.

(5) The students enjoyed the unit. However, a strong Haw-

thorne effect was very evident. A Hawthorne effect occurs when

the students in an experiment are aware that they are participating

in an experiment. As a result, the'students might try harder than

usual, thus increasing posttest results.

(6) The pedagogical procedure of proceeding from numerical

examples to generalizations was successful in involving the students

in the development of the theorems.

(7) The students were unable to prove Theorem 5 without

hints. The conclusion is that the students were unable to transfer

the strategy of Theorem 4 to the proof of Theorem 5.

(8) A new task analysis model was created and used to analyze
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the mathematical content of the unit. It extends Gagne's two-

dimensional model to three dimensions in order to include strate-

gies (or plans) in the analysis. The model was extremely helpful

in planning instructional procedures: it reminded the teacher That

the plan for each proof had to be stressed. As a result, the

reasoning behind each proof was clearly and repeatedly stated.

The value of any model lies in its utility. The conclusion

is that the new model is an appropriate model for higher-order

cognitive tasks.

(9) The final conclusion concerns the teacher: her training

in mathematical proof was not adequate enough to permit her to

comfortably teach the unit. In spite of the fact that the investi-

gator considered the experimental teacher to be a very competent

elementary school teacher, in spite of the fact that the teacher

had taken more than two years of collegiate mathematics, and in

spite of the fact that she had to spend a considerable amount of

time with the investigator preparing for each lesson, she encoun-

tered difficulties in teaching the unit. These difficulties can

probably be attributed to the fact that her training did not include

an exposure to proof and the deductive nature of mathematics. In

fact, this unit was her first real encounter with substantial

proof materials.

Conclusions Related to the Development of the Unit

The other purpose of this study was to demonstrate that the

curriculum development model advocated by Romberg and DeVault
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could be successfully applied to develop a unit on proof for use

in the elementary school. Since the feasibility of the unit has

been established, the effectiviness of the model has been demon-

strated. Several observations are worthy of note.

The theoretical framework of the developmental procedures

used in this study combine the ideas of two psychologists whose

theories of learning are almost diametrically opposed: Bruner, who

is a cognitive psychologist, and Gagne, who is associated with

stimulus-response theory.

The mathematical phase of development involved Gagne's con-

cept of task analysis. The iterative nature of the model, however,

was guided by the spirit of Bruner's hypothesis: any subject can

be taught effectively in some intellectually honest form to any

child at any stage of development. The approach consisted of task

analyzing the desired behaviors (Gagne), trying out the materials

with students, and, if the materials were not appropriate, re-

analyzing the tasks into simpler cognitive elements (Bruner).
.0,

At face value, Bruner's hypothesis is patently false. Yet

the hypothesis may have functional validity as a principle of

curriculum development. The modifications made in the proof of

Theorem 6 illustrates its usefulness. The original theorem stated:

Given any set of prime numbers { P1, P2, P3, , Pn}, there

is always another prime number.

First, the subscripts were eliminated to simplify the state-

ment of the theorem:
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Given any set of prime numbers {2, 3, 5, 7, ", P} , there

is always another prime number.

This simplication made the theorem mathematically less

general:theZ,1 < i 1 n, can represent any prime numbers in

any order, but the primes in the second set are fixed. Nonetheles§,

the change made tie theorem more accessible to the minds of the

sixth graders. In addition, this made it possible to give simple

numerical examples to illustrate the technique used in proving

the theorem ; that is, 2 + 1 = 3, (2 x 3) + 1 = 7,

(2 x 3 x 5) + 1 = 31, etc.

With this change, the classical proof of the theorem was then

presented. The students had great difficulty in applying the

Fundamental Theorem of Arithmetic. A change was therefore made in

the proof. Since the Fundamental Theorem had been accepted as a

postulate, it was replaced with another assumed statement which

was not an "or" statement. As a result of these changes, the

statement of the theorem and the proof were made accessible to the

students. In short, (as predicted by Bruner's hypothesis) there

was a form of the proof which was appropriate for sixth-grade

students. This example illustrates the basic philosophical

approach to curriculum development employed in this study: the

mathematics should be made to conform to the cognitive abilities

of the students, and not vice versa.

Starting with an original unit which proved to be relatively

ineffective, repeated revisions were made in both the mathematical



135

and instructional components of the unit until a highly effective

unit was produced. Hence, the conclusion is that the procedures

outlined by Romberg and DeVault were successfully employed to

develop a unit on proof which was effective with a particular

group of average and above average sixth-grade students.

RECOMMENDATIONS FOR FURTHER STUDY

The study carried the development of a unit on proof into the

Pilot Examination phase of the developmental model of Romberg and

DeVault. The Analysis and Pilot Examination phases of curriculum

development tend to be more exploratory than experimental in

nature, the primary concern of the curriculum developer being to

find materials and procedures which work in the classroom. The

findings and conclusions made during these phases of development

must be subjected to further examination. The results of the study

suggest the following recommendations for further study:

(1) The formative development of the materials in the unit

should be continued in an attempt to answer two questions:

(a) Will the unit be effective with other groups

of average and above average students?

(b) Will other elementary school teachers encounter

difficulties in learning and teaching the unit?

The teachers who are to teach the unit should attend a pre-

service workshop in order to learn the content and intended peda-

gogy of the unit. Instructional materials would have to be

written for this purpose. If the pilot studies indicate that the
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teachers are having difficulties teaching the unit, the materials

might then be tried out at the junior high school level.

- (2) The success of this study suggests that it might be

profitable to continue experimentation with other proof materials

at other grade levels. The present study used number theory as

the vehicle for presenting proof. Other areas of mathematics

might offer excellent opportunities for proof-making activities.

From the present vantage point, an integrated program of

.proof for grades 4 - 12 is a distinct possibility for the future.

If proof materials can be developed which are appropriate for

grades 4 - 9, studies could be conducted to determine the effect

of such materials on the student's ability to prove results at the

high school level. Sound decisions could then be made as to the

feasibility of including proof materials in the elementary school

mathematics curriculum.

(3) Other types of comparative studies can also be conducted.

As discussed in Chapter II, there are two basic approaches to the

teaching of proof in mathematics. The first, advocated by Suppes,

begins with a study of logic. Once the principles of logic are

learned, a study of mathematical proof is undertaken. The second

approach is the one adopted for this study. Proof is taught using

the actual content of the mathematics curriculum. If a compre-

hensive program on proof can be developed for grades 4 - 9 using

both approaches, a comparative study could be conducted to deter-

mine which approach is more efficient.
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(4) Bloom's concept of mastery learning was very effective.

This suggests that an instructional system based upon Mastery

might in general be more effective in producing learning than a

system which is based upon assessment of native ability. There-

fore, mastery learning should be examined at each grade level in

all subject matter areas.

(5) The model which was followed in developing the unit on

proof needs to be applied in other subject matter areas.

CONCLUDING REMARKS

This study was undertaken in response to the recommendations

of the Cambridge Conference on School Mathematics. It has but

scratched the surface of a larger problem. that of determining the

extent to which proof materials can be incorporated into the

school mathematics curriculum.

The study was conducted under highly favorable circumstances

and the resnits must be interpreted with this in mind. The findings

have been interpreted as being partly positive and partly negative:

the preliminary indications are that average and above average

sixth-grade students (with IQ scores ranging from 107 to 135)

are capable of learning to prove mathematical theorems, but that

the task of teaching proof is, at present, well beyond the train-

ing of the typical elementary school teacher. Further study is

needed to determine the accuracy of these indications.
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JOURNAL OF FIRST FORMATIVE STUDY

FIRST DAY. A pretest was administered to assess the students' knowledge

of prerequisites needed in proving the theorems. The test consisted

of twenty items on prerequisite behaviors. As anticipated, the, results

indicated that a lesson would have to be devoted to teaching prerequisites.

The remainder of this first meeting was devoted to a discussion of

the meaning of the word "prove". An example of proof by authority and

proof by empirical evidence was given. A list of ten statements was

distributed to the students and they were asked to tell how they would

prove each of them to a doubtful friend. Many answers were unrealistic.

For example, taking the friend on aspace ship to prove to him that the

earth is spherical in shape. One of the items was on the closure of

even integers under addition, and each student cited a numerical example

as proof. Optical illusions and poor use of authority were also discussed.

SECOND DAY. The period was devoted to motivating the need for proof.

The activity with the partitioning of circles into regions was very

successful. Everyone expected the circle with six points on the cir-

cumference to yield 32 regions, and they were surprised to find= only 30

points.

The activity using the expression N
2

- N + 11 was then conducted.

Each student was asked to evaluate N
2

- N + 11 for each number from 0

to 10. Only two mistakes were made. The students guessed that N = 11

would also yield a prime, and the hypothesis was torpedoed.
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These activities were followed by a discussion of inductive reason-

ing and it was stressed that the conclusions of such reasoning are only

probable. The need for proof was stressed.

THIRD DAY. The lesson preprequisites was started. The distributive law

was explained, a practice sheet was completed, and the students were shown

how to employ the distributive law to perform rapid calculations. For

example, 7 x 97 + 7 x 3 = 7 (97 + 3) = 7 (100) = 700, all of which can

be done in one's head. The students were given a list of problems to

evaluate in this way. Both forms of the distributive law were presented

(right-hand and left-hand).

The remainder of the period was devoted to prime numbers. The

students employed the sieve of Erathosthenes to find all the prime numbers

less than 200. Three studen6 made mistakes and had to begin all over

again. The students were asked to learn all of the primes less than 50.

FOURTH DAY. The definition of divides was given and the students were

given drill sheets with problems which required them to apply the de-

finition in both ways: (1) given an equation, state a divisibility

fact; and (2) given a divisibility fact, state an equation. Criteria

for divisibility by 3 and by 9 were then discussed.

The Fundamental Theorem of Arithmetic was presented and the students

were given practice at factoring whole numbers into prime factors.

The students were then shown how to solve equations using addition

and subtraction. The example of a balance scale was used to illustrate

both principles, and the students were given ten equations to solve.

FIFTH DAY. The proof of Theorem 1 was presented. Numerical examples

were written on the board and the students generalized the statement,

If 31A and 3 IB, then 31(k+B). A proof was written for it, it was left
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following: If 21A and 2IB, then 2 1(A +B). By looking at the board,

five of six students wrote a Correct proof. A variety of different

examples was then given and Theorem 1 was discovered by the students,

i.e., If NIA and NIB, then NI(A-1-B).

Two students were able to write a proof for the theorem. The

investigator then explained the proof in detail, stressing the strategy

which was employed. A quiz was given and three students made errors.

The students were asked to memorize the proof.

SIXTH DAY. The proof of Theorem 1 was reviewed, and a quiz was admin-

istered. All six students were able to prove the result. Numerical

examples were given for Theorem 2, the students immediately formulated

the theorem, and they were asked to prove it. Three persons wrote correct

proofs. The others made the following kind of error:

A + B = NC - ND = N (C-D).

That is, a plus sign was inserted instead of a minus sign. The Theorem

and its proof were explained in detail. The similarities and differences

between it and the proof of Theorem 1 were pointed out. The students were

given exercises in which they had to determine whether or not a given

expression was divisible by a given number. For example, Is (3 x 4 x 5) +

(3 x 7 x 10) divisible by 3? Theorem 1 tells us that it is. The ex-

ercises include application of both Theorem 1 and Theorem 2. A test

was then administered on the proofs of these theorems. Everyone wrote

a perfect paper.

SEVENTH DAY. Three numerical examples of Theorem 3 were written on the

board, the theorem was immediately stated, and the students were asked

to write a proof for it. Five of the six students wrote a correct proof.
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The students were then asked to give one numerical example for each

of the first three theorems. They were all able to do so.

A review was conducted on solving equations. The law of the Excluded

Middle was then discussed: If a statement is true, then its negation is

false. Several examples were given and the students were asked to supply

one example each (the law was not called by name). A list of statements

containing examples of the Law of the Excluded Middle were distributed

and the students were asked to identify the statements which were always

true.

EIGHTH DAY. Indirect proof was discussed and then numerical examples

were given for Theorem 4. The general theorem was then stated, and a

proof was written on the board. There was a great deal of confusion.

The students did not follow the proof. Because there was only two days

remaining, it was decided to skip this theorem and present Theorem 6 on

the following day.

NINTH DAY. The day was spent on Theorem 6. The expression (2 x 3 x

x P) + 1 was evaluated for P = 2, 3, 5, and 7. The proof of Theorem 6

was presented and discussed. The students were told that they would be

tested on the theorems on the following day. A review was made of Theorems

1, 2, 3 and 6.

TENTH DAY. A test containing prerequisites and theorems was administered

on the final day of the study. The prerequisites were mastered, as were

the proofs of Theorems 1, 2 and 3. No one could prove Theorem 4. Each

student was able to form the correct expression for Theorem 6, concluded

that none of the prime numbers in the set divided it, but they were

unable to apply the Fundamental Theorem of Arithmetic.
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JOURNAL OF SECOND FORMATIVE STUDY

FIRST DAY: A pretest was administered. The results showed that the

students were proficient at substitution, but weak in the other pre-

requisites. The distributive law and the definition of divides were

presented.

SECOND DAY: The discussion of divisibility was continued with criteria

for divisibility by 0, 2, 5, 3, and 9. The students were asked to

determine if given numbers were divisible by particular numbers. Sub-

stitution and evaluation were presented. The students worked on drill

sheets containing the prerequisites for the first theorem. A quiz

was given and six of the seven students displayed a mastery of the

skills.

THIRD DAY: The need for proof in mathematics was motivated by torpedo-

ing inductive hypotheses. Both activities (the circles and N
2

N + 11)

were successful. Inductive reasoning was discussed. The illustrated

stories were introduced.

FOURTH DAY: Beginning with numerical examples, the proof of theorem 1

was developed. The students were able to generalize from numerical

examples. Each student learned the proof. The stories were enthu-

siastically received.

FIFTH DAY: Theorem 1 was reviewed and the students were asked to prove

Theorem 2. Two students were able to do so. The first week's work was
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SIXTH DAY: The proofs Theorems 1 and 2 were reviewed and the students

were asked to prove Theorem 3. Five students wrote correct proofs.

Divisibility criteria were reviewed. The students requested additional

stories.

SEVENTH DAY: The students were permitted to experiment with a desk

computer. Each student verified criteria for divisibility by 3 and by 9

with large numbers. The first episode of a four part story was handed

out.

EIGHTH DAY: The different meanings of "proof" were discussed. Optical

illusions and poor choices of authorities illustrate the shortcomings of

empirical and authoritative evidence. The nature of mathematical proof

was discussed. The second episode of the story was distributed.

NINTH DAY: A proof for the criteria for, divisibility by 3 was developed

for two digit members. The students were then asked to prove the result

for divisibility by 9. Only two students were able to do so. Many

numerical examples were given and the students practiced writing the

proofs. The third part of the story was handed out.

TENTH DAY: A review was made of the first five theorems, and then the

students were asked to prove all five theorems. Four of the students

got parts of the proofs confused. The most frequent error was giving

incorrect reasons: the reasons for one proof would appear as reasons

in another. The proofs of the divisibility criteria were much more

difficult for the students to learn. The final episode in the story

was distributed.

ELEVENTH bAY: The prerequisites for Theorems 4 and 5 were discussed.

Drill sheets on contradictions and the law of the Excluded Middle were
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used, and examples of indirect reasoning in everyday situations were

presented. The students requested more stories.

TWELFTH DAY: Theorem 4 was developed. The students expressed confusion.

No one was able to learn the proof.

THIRTEENTH DAY: The students used the sieve of Eratosthenes to find

all prime numbers less than 100.

FOURTEENTH DAY: The game of PRIME was played and the proofs of the

theorems were reviewed.

FIFTEENTH DAY: The proof of theorem 6 was presented. Given the sets

)2, 31, Euclid method was employed to establish the existence of

another prime. The procedure was repeated with /2, 3, /2, 3, 4, 7,

12, 3, 5, 7, and /2, 3, 4, 7, 11, 13. The students seemed to

follow the presentation.

SIXTEENTH DAY: The unit was reviewed and the nature of proof discussed.

A final story was distributed.

SEVENTEENTH DAY: The students were tested on the theorems. Everyone

could prove the first three theorems, five persons could prove Theorem 6,

three persons proved the divisibility criteria, and no one could prove

Theorem 4.



APPENDIX C

LESSON PLANS AND JOURNAL

FOR THIRD FORMATIVE STUDY

147



148

LESSON ONE

PREREQUISITES

The proofs of the first three theorems in the unit require three

basic concepts: the distributive law, substitution of a known quantity

into a given expression, and the definition of divides. A criterion

of (80/80) must be reached before proceeding to Lesson Two.

A. DISTRIBUTIVE LAW

BEHAVIORAL OBJECTIVE:

1. When given a list of equations, the student can identify those

which are examples of the distributive law.

2. The student can apply the distributive law to expressions of

the form NP + NQ.

MATERIALS:

1. Introduction and first lesson of story

2. Three drill sheets

3. Mastery Test

4. Introduction, First Lesson, and parts one and two of

"Long Live the King"

PROCEDURE: Begin by writing a numerical example on the board. Ask how

many of them have heard of the distributive property. Pointing tc the

numerical example, explain the distributive law: "If the sum of two

products have a common factor, then this common factor can be pulled out

and multiplied by the sum of the remaining factors." Then say, "Let's

see if this law really holds for this example." Write,
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(3 x 4) + (3 x 5) I3(4 + 5)

12 + 15 = 3(9)

I,

27 ; 27

Yes

Then erase the question marks.

Stress that the operations inside parentheses are always done first.

Repeat with another numerical example. State tL t the distributive law

holds for all numbers.

Then write an algebraic example on the board, such as NP + NQ =

"If N, P, and Q represent numbers, then NP means N times P; with letters,

we can leave out the multiplication sign. Hence AB means 'A. times B'

and 5K means '5 times K'. This will not work, of course, with two numerals.

2 3 means 'twenty-three,' but 2 x 3 means 'six. 1."

Ask for a volunteer to apply the distributive law to NP + NQ. If

a correct response is given, explain how it fits the general form. If

not, write the correct response, N(P + Q), on the board, explain, and

give another example: 5A + 5B = ? Repeat giving examples and explain-

ing until a student provides the correct response. Then pass out drill

sheet #1. Do the first one together, then ask the students to complete

the sheet. Correct and discuss in class. Students can correct their

own papers.

To illustrate a computational use of the distributive law, ask the

students to evaluate 7 (91) + 7 (9). (A fast way to do this is to apply

the distributive law: 7 (91) + 7 (9) = 7 (91 + 9) = 7 (100) = 700).

"Can anyone do it in his head?" If so, ask them to explain. If no

response, say "Perhaps you could use the distributive law." If still
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8 (994) + 8 (6) = 8000

"Using the distributive law, I can do this in my head. Can you?" If

no one can do so, explain that 8(999) + 8(1) = 8(999 + 1) = 8(1000) =

8000, all of which can be done in one's head.

Distribute drill sheet #2. Do the first one together, then ask the

students to write the remaining answers as rapidly as possible. Correct

in class and discuss.

Hand out drill sheet #3. The students are to identify instances of-.

the distributive law. When completed, discuss. Items 4 and 5 are true

statements, but they are instances of the commutative property.

Distribute introduction and the first lesson episodes of the Emirp

stories. Instruct the students to answer all questions in the story as

they read it. When they have finished the stories, check the answers in

class,

Then adminf_ster the mastery test.

B. DIVISIBILITY

BEHAVIORAL OBJECTIVES:

1. Given a divisibility ,fact of the form NIA, the student can

apply the definition of divides and write an equation of the form

A = NP

2. Given an equation of the form A = BC, the student can

apply the definition of divides and write the divisibility facts

B IA and CIA

MATERIALS:

1. Two drill sheets

2. Mastery test



151

PROCEDURE: Begin the discussion by writing a numerical example such as

30 = 3 x 10 on the board. Explain that since 30 can be expressed as a

product of the numbers 3 and 10, 3 and 10 are called factors of 30.

"This equation expresses a multiplication fact...but it also gives us
A

two division facts. We say that 3 and 10 divide 30." Write

30 = 3 x 10

3 is a factor of 30

10 is a factor of 30

also 3 divides 30 and 10 divides 30.

Explain that to say that "3 is e factor of 30" means the same thing as

"3 divides 30." Then give another example.

45= 9 x 5

Point out that 9 and 5 are factors of 45 and that 9 divides 45 and 5

divides 115. "In mathematics we often use symbols in place of words to

make things easier to write. For example, "one plus two equals three"

can be written as 1 + 2 = 3.. To save chalk and time, we shall use a

symbol for the word "divides." It will be a vertical line. This is

not a fraction." Place a third example on the board.

100 = 2 x 50

"Can anyone give me two division facts expressed by this equation?"

Discuss. Answer questions. Point out that for each factor there is a

division fact. Then give the general definition: "If A, B, and C

represent any 3 numbers, and if A = BC, we say that B is a factor of A,

that C is a factor of A, and that BIA and CIA."

Give several more numerical examples, asking students to supply the division

statements and to identify the factors.
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Leave a numerical example on the board, e.g., 24 = 4 x 6. 4124 and 6124.

Then write an algebraic expression on the board underneath it.

A = TX

"If these letters represent numbers, can anyone give me two division facts

expressed by this equation?" They should reply, "TIA and XIA."

After questions have been answered, hand out a drill sheet #1 and correct

them in class. Circulate while students are working on them, try to

correct errors.

The reverse procedure should then be presented. instead of starting

with an equation (A = BC) and deriving division facts (BIA and CIA), start

with a division fact (such as TI V) and derive an equation (V = TQ).

"If we are told that 3130, then we know that there is some number, call it

N, such that 30 = 3N. We know, however, that N = 10 in this case. I'm

going to write some division facts on the board. For each one you must

write an equation; for example, 2124 means 24 = 2 x 12."

4112

6130

Ask for volunteers and discuss.

"If J and K are two numbers, and if we are told that JIK, then we know

that there is some number, call it D, such that K = JD." Point out that

we could have used any letter we wished for D. Encourage them to use

different letters, so long as they have not been previously used in the

problem.

"Who can come to the board and write an equation for this fact: TI W ?"

If no one volunteers, write W = TK and try another example. Point out

that W must be the larger number since T divides it, so write W =
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Then give examples involving the sum and difference of two numbers.

Write, 61(4 + 8) means (4 + 8) =6 x 2. "Remember, 4 + 8 represents one

number, and not two. Who can write an equation for this division fact?

51(7 + 8). The correct answer is (7 + 8) = 5 x 3." Discuss, then proced

to algebraic examples. "Who can write an equation for WI(A + B)?"

Explain that (A + B) represent one number not two. The correct answer

is (A + B) = WT, where T is arbitrary.

Then pass out a drill sheet (#2), work it in class, and correct it

together. rinally, administer a mastery test.

C. SUBSTITUTION

Substitution is used in proving several of the theorems in the unit.

It is also used when giving numerical instances of a given theorem.

BEHAVIORAL OBJECTIVES:

1 Given an equality such as A = BK and an expression such as A f 78,

the student can apply the substitution principle: A + 78 = BK + 78.

MATERIALS:

1. Drill, sheet

2. Mastery test

3. Lesson mastery test

PROCEDURE: This skill is a relatively easy one to master. Begin by

writing this example on the board:

If M = BK and N = BL, then M + N =

Explain that since M and BK represent the same number, BK can replace

M. And since N and BL represent the same number, BL can replace N. Hence,

M + N = BK + BL.

Then write another example on the board:

If A = NP and B = NQ, then A B =
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Ask for a volunteer to substitute into the given expression. Discuss.

Be sure to point out that the minus sign must remain the same. Only A

and B are changed. Hand out the drill sheets, do the first two together

in class, then ask the students to complete the problems at their desks.

Discuss. Then administer the mastery test on substitution.

Then review all of the prerequisites and administer the Lesson

mastery test.

NOTE: The episodes of the story serve two basic functions: (1) to

introduce new ideas and serve as a springboard for a discussion of these

new ideas; and (2) to provide practice and drill on prerequisite skills.

They may be inserted into the lesson whenever the teacher thinks they are

most appropriate. Explain to the students that they are to read the

stories with a pencil, and that they must do all of the exercises in each

of the stories.
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A pretest was administered to the twenty students who were partici-

pating in the experiment. The following instructions were given:

"We are from the Res'earch and Development Center of the Uni-

versity of Wisconsin. As you know, we are here to try out some

new ideas in mathematics for sixth-graders. So that we will

have a better idea of what sixth-graders know, we would like you

to take this test. We do not expect you to do all of the pro-

blems. In fact, some of the problems will be new to you. Do

the best you can on. the problems you understand. If you have

any questions, raise your hand and one of us will come to your

desk. Are there any questions?"

The test required 15 minutes.

When the testing was completed, the students in the control group

returned to their regular classes. The investigator then gave a brief

introduction to the experimental class:

"The unit in which you are participating is on mathematical

proof. We will learn to prove that certain mathematical state-

ments are true. This unit will last four weeks, and at the end of

that time we hope that you will be able to prove some mathematical

statements.

Are you familiar with this set: [O, 1, 2, 3,.. ? It is the set of
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whole numbers. In this unit we will prove some interesting facts about

this set. Whenever we speak of "number", we shall mean "whole number."

Before we prove some results, it will be necessary for us to review a

few ideas to make certain we understand them. Ideas like the distributive

law, prime and composite numbers, and how to evaluate expressions. Once

we have learned these, we will be ready to prove some things.

We will be using a new idea in this class. Usually, the following

procedure is followed: The teacher presents a unit of study, she

administers a test, assigns grades of A,B,C,D or F, and then proceeds

to the next unit: This diagram shows the procedure:

TeachTeach Test Assign

Unit Grades next

unit

We shall use a new idea called "mastery learning." This means that

we want every student in this class to learn everything we teach. That

is, you will master every idea, concept, and skill in this unit. If

you are not able to do something at first, the teacher will give you

extra help. We believe that if you really want to learn the ideas in

this unit, we can give you enough help so that you can. This diagram

shows how mastery learning works:

Teach
unit

Test

non-

masters

masters

Give

extra

help

Teach
next

unit
no. .....
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First the lesson is taught, then you are tested. If everyone masters

the ideas, we go on to the next lesson. If all o2 you do not master

the ideas (in this case you will be called non-masters), the teacher

will give you extra help. Then you will be tested again. This will

continue until you are all masters."

At this point a student asked the following:

Question: What if one of us just candot learn something?

Answer: We will probably give two tests, and if only one
or two of you are non-masters, we will go on. But
if 3 or more of you are non-masters, we will
continue to study the topic.

"If you successfully complete this unit, you will receive this certificate

with your name on it. It says, "This is to certify that

has completed an experimental unit on mathematical proof and has mastered

the concepts therein!"

With 15 minutes remaining, the teacher began instruction. She

stressed that she wants to knotq whenever anyone doesn't understand some-

thing, and encouraged them to ask questions. She wrote this example on

the board.

(3 x 4) + (3 x 5) =

"Do you know what the distributive law is?" "Can you apply it to this

sum?" One student said, "That is equal to (3 x 4) + (3 )0): Another

said, "That is 27." The teacher explained the distributive law and

wrote, (3 x 4) + (3 x 5) = 3 (4 + 5).

The equation was then verified:

12 + 15 = 3 (9)

27 = 27
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Another example was written on the board:

(2 x 8) + (2 x 2) =

A correct response was given immediately, and the equation was verified.

The teacher explained that if N and IA represented numbers, NM meant

N x M. She then gave two more examples on the board:

NM + NQ =

5A+ 5B=

Correct responses were given. Drill sheet #1 was then passed out. The

first two were done orally, and the students were asked to do the

remaining problems. When finished, each student read an answer. All

were correct.

With 4 minutes remaining in the class, the teacher gave each student

the introduction to the story.

ANALYSIS: The lesson went as planned and no changes were made in the

lesson.

Wednesday, April 16, 1969

The teacher began by discussing how the stories would be used. She

then wrote the following expression on the board:

(4 x 5) + (4 x 9) =

"Can anyone apply the distributive law to this expression?" Every

student raised his hand, and a correct response was given. The teacher

restated the distributive law, pointing to the board as she spoke.

"If the sum of two products have a common factor (in this case 4),

then this sum can be written as product of that common factor and the sum

of the remaining factors (in this case 5 + 9)."
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She then wrote 91 (9) + 9 (9) = on the board and asked, "Can anyone

give me the answer to this problem?" One student volunteered and merely

repeated the expression. "That's correct, but can you tell what number

this expression represents? Can you do it in your head by using the

distributive law?" Another student gave the correct response, 900.

The teacher wrote 8 (75) + 8 (25) = on the board. Four students raised

their hands; a correct response of 800 was given. After a correct

response was given for 9 (88) + 9 (12), a student explained how the

distributive law could be used to rapidly perform these special

calculations. She passed out drill sheets and asked them to write

down the numerical answers as rapidly as possible. Within one minute

the students had completed the list. Each student supplied one answer

orally as the class corrected the papers. As with all drill sheets, each

student corrects his own paper.

The students were then given a list of equations and were asked to

identify those which were examples of the distributive law. The first two

were .one orally in class, and the students completed the remaining one.

in correcting the problems, each student supplied one answer. One mistake

was made: an example of the commutative law was identified as the dis-

tributive law. The teacher pointed out that while the equation was true,

it was not an instance of the distributive law.

Copies of the story involving the distributive law were then handed

out, the students worked the problems in the story, and the problems were

discussed. This took fifteen minutes.

A mastery test on the distributive law was administered. It required

five minutes and all students were masters. The teacher introduced
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divisibility by writing 30 = 3 x 10 on the board. She pointed out that

3 and 10 are factors of 30 and that 3 divides 30 and 10 divides 30.

The teacher wrote "45 =" on the board and asked for factors of it.

5 x 9 was suggested, and then she wrote:

5 divides 45

9 divides 45

She then introduced the use of the vertical line to represent

"divides", explaining that it was easier to write a vertical line than

to write "divides" each time. Asking the students to supply two divisi-

bility statements for each equation, the teacher wrote the following

equations on the board:

10 = 50 x 2

A = BC

90 = 45 x 2

A = TX

66 = 6 x 11

In each case correct responses were given by a student.

ANALYSIS: The day's lesson went as planned. There were three mistakes

on the Mastery Test (out of a total of 200 responses).

Reading the story took fifteen minutes; some students are much faster

readers than others. It was decided to assign all future stories as home-

work so as to conserve class time.

Thursday, April 17, 1969

The teacher began by writing 24 on ithe board and asking for factors

of 24. 6 x 4 was offered, and then she asked for two divisibility facts.
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The students responded with 6124 and 4124. The same procedure was

followed with A = BC. Drill sheet #1 was handed out, the first problem as

done orally, and the students worked the remaining problems. In correct-

ing the papers, each student read an answer. All were correct.

The teacher then wrote 3130 on the board and asked if anyone could

give an equation to represent this divisibility fact. A student res-

ponded correctly, 30 = 3 x 10. Then 10150, 3112 and 6124 were written

successively on the board and correct responses were given by the students.

When the teacher wrote AlT and asked for an equation, two students

raised their hands. One said, "A = TN." This was corrected by another

student. The teacher explained that since the unit only discusses whole

numbers, that the T must be the larger number, hence T is equal try the

product of two smaller numbers.. This was followed by PIN. A student

gave an incorrect response: P = NA. Again the teacher explained. Another

example was given, TIX. This time a correct response was tiven: X = TN.

One student asked if we could use a number, such as,. X = 2T. The teacher

explained why this was not permissible.

A sum was then given, 41(6 + 2). She stressed that (6 + 2) should

be thought of as one number, not two. A correct response was given.

81(9 + 7), Al(B + C), LI(M + N) and Sk,.. B) were all answered correctly.

One student said that he did not understand what the last example meant,

so the teacher illustrated it with 6everal numerical examples.

Drill sheet #2 was then handed out, done in class and, corrected.

The mastery test on divisibility was then administered. It took 17

minutes.

With 6 minutes remaining in the period, the teacher began substitution.
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The first example was: If A = 3, then A + 6 = ? 9 was given as the

answer, and the teacher explained that to do the problem the 3 is

substituted for the A. She then introduced the square notation:

N
2
means N x N. Four examples were given, and then three subs itution

problems were written on the board:

If N = 3, then N
2

-14 + 1

If N = 5, N
2

N + 11

If A = MK and B = MQ, A + B =

The students as a group supplied tie correct answers. One student

observed that in the last example the substitution did not get us any-

where. Another asked why 25 5 + 11 wasn't 25 16. The teacher ex-

plained that this would be true if parentheses were around (5 + 11). The

period ended with the teacher distributing Part One of "Long Live the King".

ANALYSIS: Six of the ten students were masters on the mastery test for

divisibility. Since a criteria of (80/80) has been set on all prerequisite

skills, recycling was necessary. Of the 25 incorrect responses, 22

were made in writing divisibility facts for a given equation. It also

appeared that there was some interference. In class the students had

drilled on these two skills separately, the two kinds of problems were

not given at the same time. The test, to the contrary, mixed the two

kinds of problems together. The first three problems on the Mastery Test

were equations, and 29 of the 30 responses were correct. Items 4, 5, and

6 were divisibility facts. Item 7 was another equation, and from this
4

point on these of the students missed this kind of item. It thus appears

that putting both kinds of items together caused confusion for three of

the Students.
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It was decided to alter Friday's lesson and present more work on

divisibility. A drill sheet was prepared as a homework assignment.

One other change was made. When given that A = MK and B = MQ and asked

to substitute into the expression A + B, a student observed chat the

zesulting expression MK + MQ was more complicated than the original

expression. The teacher did not respond. It was therefore decided to

explain why such a substitution might be desirable. That is, that it

would be used later when proving a theorem, and that this substitution

permitted us to apply the distributive law.

Friday, April 18, 1969

The teacher began by reading the answers for the story. On

yesterday's Mastery Test, the students had difficulty writing divisi-

bility facts from a given equation. Items 7,9,11,13,15,17, and 20

were discussed, and the teacher asked the students tc, give answers for

the following problems which she wrote on the board.

G = VX

XIM
(A + B) = NJ
OA Q) = TF

316

31A
(P + Q) = FG

For XIM, one student said "XM = S," and then corrected herself.

Since only 6 of 10 students had mastered the skills on divisibility,

the teacher explained that another test would be administered on Monday.

It was stressed that she wanted everyone to be masters.

The teacher then continued the previous day's lesson on substitution.

She explained that if A = MN and B = MP, then (A + B) = MN + MP. The
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resulting expression is more complex than (A B), but it was pointed

out that the distributive law i-:ould be applied to MN + MP and that this

was going to help us prove some theorems later in the unit. The drill

sheet on substitution was then passed out. The teacher helped students

as they worked the problems at their desks. One student was slow in

completing the sheet. The teacher read the answers.

The substitution Mastery Test was then administered.

A practice sheet on all prerequisites was then distributed to the

class and the students worked the problems at their desks. Two students

had difficulty and the teacher explained each type of problem to these

students.

The teacher then reviewed each of the prerequisites on the board.

With five minutes remaining in the period, Part Two of "Long Live the

King" was handed out and the students read for the remainder of the period.

ANALYSIS: The lesson went as planned.

Monday, April 21, 1969

The previous day's story was discussed, and after a brief review of

the prerequisites, the Mastery Test was administered. It took twelve

minutes of class time.

ANALYSIS: Eight of ten passed the Mastery Test. Two students missed

one problem each, six students had a perfect paper, another student

missed five problems (4 of them on divisibility). It was decided that

the two _on-masters would come in during their lunch hour (preceding the

class) for extra help.



DISTRIBUTIVE LAW DRILL SHEET #1

1. AB + AC =

2. 5T + 5R =

3. MR + MT =

4. 3W + 3D =

5. NP + NQ =

6. AP + AQ =

7 . 8Q + 8W =

8. 6F + 6T =

9. 2D + 2X =

10. 13A + 13F =

11. CX + CY =

12. DM + DK =

165
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DISTRIBUTIVE DRILL SHEET #2

1. 4 (7) + 4 (3) =

2. 5 (99) + 5 (1) =

3. 8 (93) + 8 (7) =
4-...

4. 6 (999) + 6 (1) =
.s,...-

5. 2 (95) + 2 (5) =

6. 7 (98) + 7 (2) =

7. 9 (997) + 9 (3) =

8. 3 (92) + 3 (8) =

9. 4 (97) + 4 (3) =

10. 8 (998).+ 8 (2) =
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DRILL SHEET #3

LIST OF EQUATIONS: Identify Instances of
the Distributive Law (write Yes or No)

1. AB + AC = A (B + C)

2. 5X + 5Y = 5 (A + B)

3. 2A + 2T = 2 (A + T)

4. AB = BA

5. A+B=B+A

6 . MN + MR = N (M + R)

7. AB + AT = T (A + B)

8 . XA + XM = X (A + M)

9. 3U + 3V = 1.0

10. 2A = 3 (A + B)
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DISTRIBUTIVE LAW MASTERY TEST

Which of the following are instances of the distributive law? Write

yes or no.

1. AB + AC = 10

2. AB + AC = A (B + C)

3. NP + NQ = N (P + Q)

4. N+M=M+N
5. 10 x 5 = 5 x 10

6 . 3K + 3G = 3 (K + G)

7. 15T + 15R = 15 (A + B)

8. 2M = 2K

9. (3 x 5) + (3 x 7) = 3 (5 + 7)

10. TP + TK = T (P + K)

Apply the distributive law to each of the following:

11. AB + AC =

12. NP + NQ =

13. 30V + 30K =

14. 7 (92) + 7 (8)

15. CD + CX =

16. VE + VR =

17. MT + MR =

18. 52K + 52V =

19. 10T + 10G =

20. NA + NB =
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DIVISIBILITY DRILL SHEET #1

For each of these equations, give two divisibility facts.

1. 30 = 5 x 6

2. 100 = 4 x 25

3. A = XY

4. W = RT

5. A = VW

6. B = UV

7. M = KT

8. 101 = 1 x 101

9. 32 = 2 x 16

10. K = VT
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DIVISIBILITY DRILL SHEET #2

Write an equation to express the following facts:

1. 6160

2. AIT

3. BIC

4. .12124

5. MIR

6. NI (A + B)

7. Ti (A - B)

8. WI3K

9. V IW

10. 2IT
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DIVISIBILITY MASTERY TEST

For each equation, write 2 divisibility facts. For each divisibility

fact, write an equation.

1. A = TW

2. B = RV

3. 40 = 5 x 8

4. 3115

5. 4116

6. TIR

7 . A + B = NX

8. KIV

9. A B = MY

10. NI (A + B)
/

11. A + B = MN

12. MIA

13. C + D = TV

14. T1 (A - B)

15. A = CD

16. FIR

17. M = FT

18. 319

19. 2116

20. V = 2W
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SUBSTITUTION DRILL SHEET

1. If K = 6, then M + K =

2. If A = NP and B = NQ, then A + B =

3. If K = T, then M + K =

4. If M = XT and N = XR, then M + N =

5. If A = MK, D =MR, B ML, then A + B + D =

6 . If C = NP and D = NQ, then C - D =

7. If K= 7B, then M + K =

8. If M = 5T, then N - =

9. If KP = 2, then M - KP =

10. If V = NK and W = NR, then V W =

SY
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SUBSTITUTION MASTERY TEST

1. If C = NP and D = NQ, then C + D =

2. If T = 5, then M + T =

3. If A = 5Q,then 7Q + A =

4. If F = MP and G = MQ, then F - G =

5. If NQ = 6, then P + NQ =

6. If AB = 2, then AB + C =

If A '= 6, B = 7, then A + B =

8. If A = NP, =NQ, C = NR, then A + B + C =

9. If K = 3, then M + K =

10. If N =AB and 11,= AC then N + M =



PRACTICE SHEET ON PREREQUISITES

APPLY THE DISTRIBUTIVE LAW:

1. 3W + 3V

2. XT + XR

WHICH OF THE FOLLOWING ARE INSTANCES OF THE DISTRIBUTIVE LAW:

3 . AB = BA

4. AC + AD = A(C + D)

SUBSTITUTE:

5. If A = 10, then 4 + 10 =

6. If T = MK and S = ML, then T S =

WRITE AN EQUATION FOR EACH OF THESE DIVISIBILITY FACTS:

7. AIM

8. 2I (A + B)

WRITE TWO DIVISIBILITY FACTS FOR EACH OF THE FOLLOWING EQUATIONS:

9. A = TF

10. (A+ B) = XJ

V
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Meet }iarvey the elephant and Sidney the monkey.

They are very intelligent animals. The other

animals discovered this last Bananaday. In

case you did not know, Bananaday is the third

day of the week, on the animal's calendar:

Sunday, Monday, Bananaday, Wednesday; Thursday,

Friday, and Saturday. Bananaday is the day of

the week that all the monkeys of Munkeyville

gather bananas.. They always put all of the

bananas in one big pile, and then the King,
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King Herman,the King of Monkeyville, passes

the bananas out to the monkeys. They line

up in a long line, .and as they walk past

Herman he gives a banana to each monkey.

When all the monkeys have a banana, they

go through the line again. This continues

until all the bananas are gone. This ttfces

a lot of time. Tt is also unfair, because

the monkeys at the end of the line often

get one less banana than the other monkeys.

fug



Last Bananaday, Sidney said, "Excuse me,

your highness, but Harvey and T have thought

of a faster way to hand out bananas". "You

have?" asked the King.

"Count the bananas," said. Harvey. "Then

divide by 98, the number of monkeys in

liOnkeyvitle", added Sidney.

"And this will tell you how many bananas

to giVe to each monkey," said Harvey.
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"My word," said the King. He was confused,

for he could only count to 20 and could not

divide at all.

"There are 1,083 bananas in this pile. So

if you give each monkey 1.1 bananas, there

will he 5 bananas left over. Then, you

can save these 5 for visitors who visit you

from time to time:"

Herman did not believe it. "This sounds like

a lot of monkey business," he said as he

started handing out bananas one at a time.

Well, you can imagine the King's surprise

when he discovered that our two young friends
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were right. Sidney was immediately made the

official banana counter for all of Monkeyville.

This made all the monkeys happy because now

they did not have to stand in line for hours

to get their weekly supply of bananas.

The-king also decided to send Sidney and Harvey

to school. Since aninals do not have schools,

the King made arrangements for them to study

with Mr. EMIRP, the wisest 'elephant in the

jungle.



You are invited to tag along with Sidney

and Harvey as they study mathematics with

the great Mr. EMTRP.

There is only one catch---you must do all

of the problems that Mr. EMTRP gives to

Sidney and Harvey.

Our two friends are about to go for their

first mathematics lesson.

Are you ready?
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THE FIRST LESSON

When Harvey andSidney arrived for their first

lesson, they found Mr. EMIRP leaning against a tree,

fast asleep. They had heard so much about the great

Mr. EMIRP that they did not dare awaken him. They

did not have to wait long, however, for Mr. EMIRP

was breathing so heavily that he sucked a bee up

his trunk. He exploded with a sneeze which sent

the bee sailing at least a mile into the jungle.

As he was wiping off the end' of his trunk, he saw

Harvey and Sidney standing nearby.



Veil, well," said EMIRP, "you two must be Harvey

and Sidney. I've heard good things about you."

"Thank you, Sir," the boys replied, "We have come

for our first lesson." "Oh yes," said EMIRP, still

somewhat sleepy. He decided to give the boys a

difficult problem so that he could catch a few

more winks of sleep while they were working on it.

"Your first problem," h' said, "is to . multiply

59x509."

Now EMIRP was almost asleep when Sidney shouted

out, "The answer is 30,031."



Mr. EMIRP was so surprised that he fell flat

on the seat of his pants.

"Holy elephant feathers! That's right," he

said, "Tell me. How did you do it so quickly?"

"I just did it in my head,"

said the young monkey.
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The great EMIRP was certainly impressed.

He realized that he was not dealing with ordin-

ary animals. He dusted off the seat of his' pats,

and said, "O.K. Let's get dawn to business.

Today we shall study the DISTRIBUTIVE property."

"The what?" said Harvey.

"The DISTRIBUTIVE property," answered Mr.

EMIRP. "It's very simple if you know what a fac-

tor is."

'Isn't that something a farmer uses to plow

his fields?" asked Sidney.
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Then he explained what a factor is. "If A, B, and

C represent any three counting numbers, and if A = BC,

then we say that B is a factor of A, and that C is a

factor of A. For example, 10 = 2x5, so 2 and 5 are

factors of 10."

"Oh," said Harvey. "Since 100 = 4x25, 4 and 25 are

factors of 100."

"Beautiful," said Mr.. Emirp. "Can you answer these

questions?"

1. is 3 a factor of 15?

2. is 7 a factor of 35?

3. is 10 a factor of 82?

Harvey went to work on the problem, but a

butterfly had caught Sidney's attention.

(67, 1711.1



"Notice that 30 = 2

are factors of 30,"

x 15 tells us that both 2 and 15

said EMIRP. "And 30 = 2 x 3 x 5

tells us that 2, 3, and 5 are factors of 30. Try

the following problems: What are the factors of each

of the following numbers:

9. 35 = 5 x 7, so the factors of 35 are ...

10. 100 = 2 x 2 x 5 x 5, so the factors of 100 are

11. 34 = 2 x 17, so the factors of 34 are

12. A = 3B, so the factors of A are

13. T = XY, so the factors of T are ...

14. (A + 13)= GH, so the factors of (A + B) are

15. (t -
)

3AB, so the factors of (T - Oare ..."
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"Gosh," said Harvey. "These are sure difficult."

"Yes, but you must learn to work with letters

of the alphabet if you want to learn algebra."

Harvey did his best. He only missed one problem.



"If you know what a factor is, we can look at the

DISTRIBUTIVE property," said EMIRP. He explained

it to Harvey. "Now, (.3 x 6)+0 x 1,)= 3(6 + 1),"

said the wise Mr. EMIRP.

"It does?" asked Harvey.

"Yes. You can check it out. On one side of the

equation we have(3 x 6)43 x That's 18 + 3,

or 21. And on the other side we have 3(6 + 1)

which is 3(7) which is also 21." "Well I'll be

a monkey's uncle," said Harvey.

Meanwhile, the bee who had been sneezed by

EMIRP had crashed into a tree and was knocked

unconscious. A worm came by, picked up a leaf,

1111
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and fanned the air.

Soon the bee regained

his senses. "Revenge,"

said the bee; and he flew off like a bullet with-

out even thanking the worm who had been a good

samaritan. There was just one thing on the bee's

mind. "Now then," said EMIRP," apply the distri-

butive property to the following sums:

16. 3A + 3B =

17. 7T + 7X =

18. AB + AC =

19. DEF + DT =

20. ABC + AX =
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"HELP!" shouted Sidney. The bee had seen him

chasing the butterfly. Now what do you thick

was the last thing the bee saw before he was

sucked up into EMIRP's trunk? Sidney, of

course. Because Sidney was the last thing he

saw, he thought that Sidney had given him the

free ride. "Revenge," said the bee as he went

for Sidney.

Harvey and Mr. EMIRP ran safely into the house,

but poor Sidney was not so lucky. Just as he

went through the door the bee stung him on the

tip of his tail.
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"There's only one thing we can do," said

EMIRP, "and that is to soak your tail in hot

honey."

As Sidney soaked his tail, Mr. EMIRP contin-

ued the lesson. "If A, B and C represent any three

counting numbers, then the disL:ibutive law states

that

AB + AC = A(B + C). tt

Then EMIRP turned to

Sidney and asked, "Well

Sidney, did you learn anything

today?"

"Oh yes," said Sidney sadly.

"I learned that a bee can sting."

And that is the end of the tale.
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LONG LIVE Tat KING: PAST CU
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Our three friends were about to begin their next

math lesson when a Wierdo bird came with a message.

"Help! We need the great EMIRP to help us."

"Whatbs wrong?" asked EMIRP.

"King Herman was on an expedition looking for

new banana trees. They were high on the mountain,

and Herman fell over a cliff. He tumbled several

thousand feet and landed on a ledge."

"Great gobs of elephant tusk! Is he O.K.?"

asked Harvey.

"We don't know. We cannot reach him."

"Let's go," said EMIRP, and they all jumped

into Mr. EMIRP's car, a 1933 Monkeymobile, and sped

to the scene of the tragedy.
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EMIRP went into action immediately. "Bird,

fly down to that ledge and see if the King is O.K.!"

The bird flew away.

"Gee," said an old monkey, "Why didn't I think

of that?"

"Brains," replied EMIRP, pointing to his head.

The bird soon returned. He was frantic. "You

must hurry. The King is O.K. but the ledge under

him is very weak and could break at any minute. And

if it breaks, " The bird broke out in tears at

the thought of it

EMIRP went into action. "Now lets see. That

ledge is made of limestone and appears to be about

3 inches thick.

-4-



"Herman weighs about 20 pounds,

so quick, Harvey! Solve

these problems for me:

1. If N = 7, what is 7 x N?

2. If K = 5, what is(8 x 9+ 10?

3. If M = 8, what is(k x M) - 5?

"Sidney, figure out these problems:

4. If A = 7 and B = 6, what is A 4-B?

5. If T = 16 and S = 30, what is T + S - 3?

6. If H = 0 and G = 13, what is H + G + 3?

They gave the answers to EMIRP in a flash. His com-

puter-like mind went to work, and he said, "If my

calculations are correct, we have exactly 5 minutes

and 31 seconds before the ledge breaks."

"Mr. EMIRP," yelled the monkey, "couldn't we

tie ropes together to make a long rope, then lower

it to the King.

EMIRP said, "It's about 3,001 feet. Harvey,

NA + Ng=
Sidney,

8. !TA 5 ,& ==

They handed him the answers. "No. That will take

more than 6 minutes."

"There is only one chance.

9. What prime will divide 42?

10. What prime will divide 100?
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Harvey, apply the distributive law to these expressions:

11. 3A + 3P)

12. Of-1407.--

13. AX ±4y

As it was a matter of life and death, they had the

answers in no time.

"Hum-m-m," said EMIR?. "Just as I expected.

Bird, how many birds live nearby?"

"Oh, gosh. Lets see...5,981 in the last census."

An old mother monkey shouted, "Hurry EMIRP. There

is only 3 minutes left."

"Get the volley ball net from my car. Harvey,

are these numbers divisible by 3:

14, 1,000,000,000,000,000,000,000,000,000,000,000,011

15. 100,000,101,030

16. 213,100,701,501

Harvey and Sidney gave him the answers almost immediately.

EMIRP's mind spun like a computer. "That's it.

Call all the birds here at once." Just then it start-

ed to rain. "Oh no. The water will affect the lime-

7/ /I
stone and the birds' wings

and ...." Quickly, EMIRP's

mind recalculated all the

figures.

"Mr. EMIRP, we have 1 minute left."

"It will still work," shouted EMIRP.
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"All you birds grab ahold of the volley ball net.

Fly down to the ledge and let Herman climb into the

net. Hurry!" As the birds flew down for the rescue,

EMIRP said, "I didn't. have time to count the birds.

If there are 5,953, the King will be saved. If fewer ...."

Were Sidney'.. and Harvey's answers correct?

Did EMIRP make a mistake in his calculations?

Is there enough time left?

Are there at least 5,953 birds on the volley ball

net?

We'll find out in the next episode.
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Just before the birds reached the ledge, it

broke. Hearing the ledge crack, everyone closed

his eyes. They did not want to see their beloved

King fall into the Hississippi River and drown.

EMIRP had failed. And to make matters worse,

Gronk was now King of Monkeyville. He stood before

the monkeys and said, "EMIRP has deliberately killed

our dear sweet King. These three must be punished."

Inside the Monkeyville jail, EMIRP and the boys

discussed their plight. "Let's recalculate our

figures." They did, and they were all O.K. "That's

strange," said EMIRP, "mathematics never lies. I

suspect foul play."

He reached into his pocket and pulled out a
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strange looking gadget.

"What is that?" asked Harvey.

"It's an emergency jail-breaker. I always carry

it with me in the event of just such an emergency.

All I have to do is set these 3 dials at the proper

numbers, then pull this plug. Quick, if yoq can give

me the answers to these problems, I can set the dials:

Apply the distributive law:

1. 7A + 7F =

2. TB f =

3. 5R +5W

4. xy-f-xc..--z

5. JK



6. TV i TB

Are these numbers divisible by 9?

7. 2,346

8. 11,000,000,000,00090009000,000,000,000,000,007

Harvey and Sidney gave EMIRP the answers, and EMIRP

set the dials. He pulled the plug and put it under

the covers of the bed. The gadget made a wierd high-

pitched noise. The guard came running to see what

was happening. "What's going on in here?" he asked.

"There is a ghost in our bed," replied EMIRP.

The guard took his key and mtered the cell.

"There is no such thing as a ghost," he said

as he tore the blankets off the bed. Whap! EMIRP

bopped the guard over the head.

44)
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In no time our three friends had made their

escape.

"Now we must find out what really happened,"

said EMIRP. They fled into the jungle. When they

got back to EMIRP's house, someone was waiting for

them.

"Hello," said a large bald-headed eagle. "Are

you Mr. EMIRP?"

"Why yes," replied EMIRP.

"Then come with me," ordered the eagle.

"Are you the police?" asked EMIRP.

"Oh no," said the eagle. "I have just cane

from King Herman. He wants to see you. Follow me."

King Herman? But he is dead. Or is he? Is

this some sort of trap? Well find out in our next

episod3.
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LESSON TWO

THE NEED FOR PROOF IN MATHEMATICS

The purpose of this lesson is to motivate the need for proof. The

point will be made that particular instances of a general theorem do

not constitute a proof, and that some other type of proof is required.

BEHAVIORAL OBJECTIVES: None

MATERIALS:

1. Blank tables to evaluate N
2
-N + 11

2. Desk Computer

3. List of Prime Numbers

4. Instructions for Programming Computer

PROCEDURE: The students have studied prime and composite numbers

earlier in the year. A brief review should prepare them for this lesson.

Ask if anyone can give a correct definition for "prime number."

After a respone is given, write the definition on the board:

A prime number is any whole number which has exactly two divisors,

1 and itself.

Note that this definition would not be quite correct if the students

had studied both positive and negative integers for, in that ease, we

would have to consider negative divisors. The definition would then be:

A prime number is any whole number which has exactly two positive

divisors, 1 and itself.
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Do not discuss this with the students unless the question is raised by

the students.

Ask for a definition of composite number, then write it on the board:

A composite number is any whole number which has more than two

divisors.

It should be pointed out to the students that 1 is neither a prime

nor a composite according to our dbfinition because it has only one

divisor, namely itself.

Distribute the tables for evaluating the expression N
2
- N + 11.

"Mr. Emirp wanted to find lots of prime numbers. He claimed that the

expression N
2
- N + 11 always yielded a prime number when it was evaluated

for any whole number. For example, if N = 0, then 0
2
-0 + 11 = 11, and 11

is a prime number." Write the evaluation on the board and ask the students

to verify that 11 is prime by checking to see if it is on the list of prime

numbers.

The sheets have room to evaluate N
2
-N + 11 for all whole numbers

throagh 10. Assign each student the task of evaluating N
2
-N + 11 for

one of the numbers from 1 to 10. Ask each to read his answer. Write his

response on the board and ask the students to check each against the list

of primes. Make certain that their calculations are correct. The answers

should be 11, 13, 17, 23, 31, 41, 53, 67, 83, and 91. Then say, "Well,

I guess that proves it. It works for all these numbers, so it must work

for all numbers. Right?"

If no scepticism is voiced, say "Let's check it out for one more

number just to be certain. Evaluate N
2
-N + 11 for 11." This will give
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the composite number 121. Point out that it is composite because 11 divides

it. Then say, "When it was pointed out

not always give a prime, Sidney claimed

to Mr. Emirp that N
2
-N + 11 will

that N
2
-N + 17 will always give

a prime. To help us see if he is correct, we will use a computer." Punch

in the program which will evaluate N
2
-N + 17 for N = 0, 1, . . . 16, and

get the answers. Write them on the board, and have the students check

them out against a list of prime numbers. Then say, "Well, we get a

prime everytime, so I guess this proves that Sidney was correct." Try

to get the students to agree. Whether or not scepticism is voiced, suggest

that it be evaluated for N = 17. Hopefully one of the students will make

the suggestion. 17
2
-17 + 17 = 17

2
= 289, which is clearly composite

because 17 divides it. "N
2
-N + 17 doesn't always yield a prime, but when

I pointed this out to Sidney, Harvey said that N
2
-N + 41 always gives a

prime." By this time it is hoped that a student suggest trying 41 immediately.

Program the computer to evaluate N
2
-N + 41 for N = 0, 1, . . . 40. It

will again yield primes. "Well, that proves it. It works for 41 numbers,

so it works for all numbers. Right?" By this time the students should

realize that giving particular instances of a theorem does not prove it.

N = 41 will not give a prime. The point should then be made that we can

never be sure of generalizing from repeated instances of an event. Stress

that while such reasoning gives us hunches as to what might be true, the

conclusions are only probable, and not certain. In mathematics probable

conclusions are not always good enough. We demand proof. Just because

something works for 100 or 200 cases is not proof that it will always work.
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JOURNAL OF LESSON TWO

Monday, April 21, 1969

With twenty minutes remaining in the period, the teacher began lesson

two. She asked for a definition of prime and composite number. "Any

number which has only two divisors," was the response. The teacher agreed

that the student had the right idea and wrote the precise definition on

the board. The teacher handed the students a list of all prime numbers

less than 10,000. The students expressed surprise at the size of the

list. "All these are primes?" The teacher asked, "How many primes are

there?" "They just keep going," was the reply. The teacher then presented

the lesson designed to motivate the need for proof. She evaluated

N
2
-N + 11 for N = O. They asked each student to evaluate it for a

different number, thus exhausting the numbers from 1 to 10. The answers

were then checked with the computer. They were all correct.

When all the answers were verified, the teacher said, "So this will

always give us a prime number. Right?" [She did not say, "Since it works

for N = 0, 1, 2, . . . 10, this proves that it works for all numbers. Right?"]

The students agreed, but one student suggested trying it with some more

numbers. The teacher suggested N = 11. It was then concluded that it

did not always yield a prime number. [The point was not made that 10

cases did not prove that it always works.]

The teacher then hypothesized that N
2
-N + 17 would always yield a

prime. She programmed the computer and read off the answers for N = 0,

1, 2, 16. The students verified that the answers were prime. Before

the teacher could say anything, several students said, "Try it for 17."
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The teacher said, "It works for all these. Does that prove it works for

all numbers?" "No, try it for 17!" was the response from almost everyone.

"If it works for 17, will you believe me?" Some said "yes" and others

"no." When N = 17 produced a composite number, two girls immediately

shouted that it was not prime. "Are you sure? Everybody check it because

these girls were trying to say that." It was concluded that 289 was

composite. Two girls laughed, and another girl admonished them, saying:

"Don't laugh at her. She probably knew it wasn't prime." [Again the

point was not made that 17 instances did not prove the result. Instead

of letting the students form the hypothesis, the teacher did. When she

was wrong several students thought she had made a mistake.]

When N
2
-N + 41 was suggested, the teacher said, "This is the one that

will work?" [Instead of leaving it an open question, the teacher stated

that it would work.] "Try 41," was the immeliate response. While she was

programming the computer, one student worked out the answer. Some . zudents

thought it would give a prime [the teacher had said it would], and others

thought otherwise. 1681 was read as the answer by the student who had

calculated it and this was confirmed by the computer. The students then

tried to explain the procedure. "If you had 199, it would work all the

way up to 199, but would not work for 199." [The students attention was

focused on the form of the expression and not on inductive reasoning which

leads to a mistake.] "It always works for a double number." The discussion

drifted and the teacher did not explain that N
2-N

+ C did not always yield

primes for all numbers less than C. A student asked, "Why did we do this?"

The teacher said that we were going to prove things. [Again, the point was

not made.]
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The students were then given a practice sheet on divisibility, Part

one of "Long Live the King," and were asked to study for the mastery test

which would be given on Monday. The students were enthusiastic about the

Emirp story.

ANALYSIS: The motivation for the need for proof fell short of the mark.

Rather than having the students formulate the hypothesis and then torpedoing

the hypothesis, the teacher would say, "I know this will always give a

prime." At several points in the lesson some of the students thought

that the teacher was actually making unintentional mistakes. At the end

of the activity a student asked, "Why did we do this?" The teacher did

not adequately explain.

Two factors probably contributed to the failure of this lesson.

First, the teacher had never taught the lesson before. We had gone over

it on two separate occasions, but both times the investigator had played

the role of the teacher.

Second, a lesson of this type is difficult to teach. It requires

that the teacher finessu the students into formulating a hypothesis, and

then torpedoing that hypothesis. In the process students will make many

replies, some of wh!.ch are pertinent to the objective of the lessons, and

some of which are irrelevant. The teacher must be able to distinguish

between the two in order to get the point of the lesson across. For

example, at one point in the lesson the teacher let the students drift

into a discussion of N
2
-N + C, C a constant. Several erroneous notions

were suggested without correction (such as N2--N + P will yield primes

for all integers less than P for any prime numbers P). It was never
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pointed out that P - P = 0 . The attention of the students was thus diverted

from the objective to'be learned.

In my opinion these difficulties stem from the fact that the teacher

is presenting ideas which are at the very frontier of her knowledge. She

does not have an overview of proof, she does not see the large picture.

To correct this weak lesson we decided to present another discussion of

inductive reasoning in an effort to motivate the need for proving mathematical

statements. A sheet with examples of inductive reasoning was prepared for

this purpose. We decided to incorporate the motivation for proof as an

introduction to theorem 1 (Tuesday's lesson).

To prevent recurrences of this type of ineffective lesson, it was

decided that the teacher would teach each lesson to the investigator

prior to entering the classroom. In this role-playing activity the

investigator would ask all sorts of questions in an attempt to prepare

the teacher for the types of questions the students might ask.

Time was also a factor. This lesson was started half way through

the period. The teacher felt rushed. It was decided to avoid starting

a new, lesson or activ:ty unless there was adequate time to complete it.
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Directions for programming the EPIC 3000 to evaluate N
2

- N + 11

MANUAL

LEARN

AUTO

punch 11

store c

punch 0

enter

rpt

rpt

X

I

rec c

print

punch 1

enter

punch 2

enter

punch 10

enter

punch 11

enter

The same program dill work for N
2

- N + 17 and N
2

N + 41 if 17

or 41 is entered instead of 11.
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LESSON THREE

THEOREM 1: IF N A AND N I B, THEN N (A + B)

The purpose of this lesson is to teach the students to write a

proof for this theorem.

BEHAVIORAL OBJECTIVES:

1. The student can write a proof for Theorem 1.

2. The student can give numerical examples to illustrate

Theorem 1.

3. The student can apply the theorem to given divisibility

facts.

MATERIALS:

1. Six incomplete or incorrect proofs

2. Poster board with proof written on it

3. Sheets with examples of inductive reasoning

4. Sheets with applications

5. Blank sheets for proving Theorem 1.

6. Mastery Test

7. Parts 3 and 4 of "Long Live the King"

PROCEDURE: Distribute the sheets with examples of inductive reasoning.

The purpose of this activity is to stress that repeated occurrences of

an event do not constitute proof. Items 2 and 7 are reasonable, whereas

the others are not. The point should be made that while the results

42
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of inductive reasoning may be reasonable, the examples do not prove

the result. Discuss the examples orally. Some students might argue

that Items 2 and 7 are proven by the large number of instances. For

item 2, ask "Isn't it possible that some day a monkey will catch

smallpox after he has been vaccinated?" For item 7, ask "Isn't it

possible that the die is not loaded and that it came up the same way

100 times purely by chance? It could happen, you know."

When all items have been discussed, start the discussion of Lesson

Three.

"We are now going to prove some facts about division." Write

214 and 216. Does 21(4 + 6)?

216 and 2110. Does 21(6 + 10)?

Give four of five such examples. If no one generalizes and suggests

that this will always work, ask if anyone sees a pattern. Then write the

statement:

IF 2IA AND 2' B, THEN 2( (A + B).

"Do these five examples prove that this will always be true?" Hope-

fully they will respond "no". If they say "yes", call their attention

to the previous discussion on inductive reasoning. Then stress that we

want to write a proof for this fact. "Let us look at a numerical example

to see why it is true. We will prove:

IF 216 AND 218 THEN 21(6 + 8)

We already know that this is true, and we really don't have to prove it,

but it will show us how to prove it for any number. We will make state-

ments (write "statement" on the board), and for each statement we will

give a reason (write "reason" on the board).
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IF 216 AND 218, THEN 21(6 + 8)

STATEMENT REASON

1. 6 = 2 x 3 1. Definition of
Divides

8 = 2 x 4

2. (6 + 8) = (2 x 3) + (2 x 4) 2. Substitution

3. (6 + 8) = 2(3 + 4) 3. Distributive
Law

4. 21(6 + 8) 4. Definition of
Divides

As you write this on the board, explain each step:

"216 means 6 = 2 x 3 and 218 means 8 = 2 x 4. So lets begin by writing

these equations. We want to prove something about (6 + 8), and so let

us write (6 + 8). But 6 = 2 x 3, so lets substitute and 8 = 2 x 4, so

we can substitute. But look, now we can apply the distributive law.

What does this last equation say? It says that 21(6 + 8), which is what

we wanted to prove." Show that it will also work for another example

(without writing a formal proof).

(22 + 10) = (2 x 11) + (2 x 5) = 2 (11 + 5)

"Which shows that 21(22 + 10)." Then write the general proof (leave the

other proof on the board):

IF 2 IA AND 21 B, THEN 21(A+ B)

STATEMENT REASON

1. A = 2P 1. Definition of divides

B = 2Q

2. (A+ B) = 2P + 2Q 2. Substitution

3. (A+ B) = 2 (P +Q) 3. Distributive law

4. 2 + B) 4. Definition of divides
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Ask the students to supply the statements and reasons.

Repeat this procedure with 3 as a divisor. Give four or five

numerical examples, then proceed with a proof for:

IF 3IA AND 3IB, 3I(A + B).

Again, the students should supply the steps in the proof.

Then generalize "This works for 2 and 3, will it work for any

number?" Write some examples on the board:

5110 AND 5115 DOES 51(10 + 15)?

717 AND 7114 DOES 71(7 + 14)?

Write the theorem on the board:

IF NIA AND NIB, THEN N1(A + B).

Before proving it, illustrate it with examples. Ask each student to

make up one example and read it to the class. Then write the proof.

Ask the students to help you construct a proof for it. Proceed as in

the numerical case, making an effort to get the students to supply as

much of the proof as possible. When it is completed, show several

instances of the theorem with specific numbers. Write N = 3, A = 6,

and B = 9. Erase every N in the proof and replace it with 3. Repeat

for A and B. Replace the N, A, and B and repeat with another set of

numbers. Then ask a student to come to the board and make up some

numbers which will work. Have him substitute these values into the

proof. You may wish to have several other students do the same thing.

With each numerical example point out the reasoning of the proof.

Then distribute practice sheet #1 which contains an error in the

steps of the proof. Ask the students to find the error if they can.

Discuss. Practice sheet #2 has errors in the reasons. Do the same with it.
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Then have the students work on the third practice sheet. When completed,

quiz the students on the proof. Discuss the proof once more. Give one

numerical example which illustrates the theorem and ask each student to

make up an example and write it on a piece of paper. Have each student

read his answer aloud.

Point out that the "plan" of the proof is to write the sum of A and B

as a multiple of N. Pass out the drill sheet on application; do one

example on the board, then have the students do the remainder at their

desks. Circulate about the room, try to catch any errors that are made.

Then administer the mastery test.

I4
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JOURNAL FOR LESSON THREE

Tuesday, April 22, 1969

The two students who did not master the mastery test arrived ten

minutes early and the teacher discussed their mistakes with them and

gave them some additional problems to work.

In preparation for the lesson, two hours were speht with the

teacher. On Monday afternoon the overall objectives of the unit were

discussed: how the unit fits into the scheme of proof and the details

of how the lesson were to be taught. The investigator acted as the

teacher in presenting the ideas to the teacher. On Tuesday morning

another session was held, and the teacher presented the materi to

the investigator as she planned to do in the classroom. The invest-

igator made inappropriate answers to her questions.

This preparation apparently paid dividends, for the lesson went

smoothly and as planned. After passing back the mastery tests and

going over the problems in the story, she passed out the sheet with

examples of inductive reasoning. After two items were discussed one

student remarked, "These are just like the problems we had the other

day with N
2

- N + 11." This was somewhat gratifying for this activity

was designed to make up for the poor lesson on Monday.

The teacher completed the proof for theorem 1 and had the students

copy it on a sheet of paper. The students were asked to learn the

proof. As the bell ended the period the teacher handed out Part Three
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of "Long Live the King."

ANALYSIS: The lesson went as planned and no revisions were made for

the next day's lesson.

Wednesday, April 23, 1969

The teacher went over Part Three of the story, then distributed

the first four incorrect proofs. Every student was able to spot the

errors. Eve-y student wrote a correct proof for Theorem 1 on the first

quiz. The teacher distributed the two other incorrect proofs and the

students made the necessary corrections. One of the students who had

not mastered all of the prerequisites was the first to find the errors

each time. He had memorized the proof the night before.

The students were given the application problems for homework,

along with the final episode of Long Live the King.

ANALYSIS: A good lesson. It was de'ided that the mastery test should

be administered at the first part of the next day's lesson.

No changes were made in Lesson 4.

Thursday, April 24, 1969

Because of an accident to a student on the baseball field, the

principal was not in his office to ring the bell for classes to begin.

Class started a few minutes late.

The teacher discussed the final episode of "Long Live the King."

Then application sheets for Theorem 1 were discussed. The teacher went

over the proof of the theorem, gave several examples to illustrate the

theorem, and then administered the mastery test.

ANALYSIS: Every student received a perfect score on the Mastery Test

for Theorem 1. No changes were made.
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INDUCTIVE REASONING

1. Harvey visited his uncle in Los Angeles for two weeks. Each day
he was there it rained.

Does this prove that it rains every day in Los Angeles?

Is it reasonable to conclude that it rains every day there?

2. Two million monkeys were vaccinated against smallpox. None of

them got the disease.

Does this prove that a monkey who has been vaccinated against
smallpox will not get the disease?

Is it reasonable to conclude that this is the case?

3. Harvey's little brother is learning to add whole numbers. He

failed two tests on addition.

Does this prove that he will never learn to add?

Is it reasonable to conclude so?

4. Sid had a teacher who gave long math assignments.

Does this prove that all math teachers give long assignments?

Is it reasonable to concluda so?

5. The Monkeyville baseball teem won its first ten games this year.

Does this prove that they will win all their games this year?

Is it reasonable to conclude that they will?

6. Mr. Emirp rolled a die two times and it turned up "2" each time.

Does this prove that the die is loaded and will turn up "2" each

time it is rolled?

Is it reasonable to conclude that this is the case?

7. Mr. Emirp rolled a die 100 times and it turned up "2" each time.

Does this prove that the die is loaded?

Is it reasonable to conclude that it is?
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8. N
2
- N + 11 gives a prime number for N = 0, N = 1, up to N = 10.

Does this prove that it works for all numbers?

9. N
2
- N + 17 gives a prime number for all the numbers from 1 to 16.

Does this prove that it will do the same for all numbers?

10. What about N2 - N + 41?

,



THEOREM ONE APPLICATION SHEET

Theorem 1 says that if NIA and NIB, then NI(A + B). Apply this theorem

to the following facts:

1. 3112 and 3115, so

2. NIT and NIR, ro

3. 713IM and 713IN, so

4. (A + B)IP and (A + B) (Q, so

5. P1K and PIL, so

6. 71(14 + 7) and 717, so

Remember (14 + 7) represents one number, not two.

7. A l(P + Q) and AIR, so

8. 2,3751A and 2,375 {B, so

9. MIV and MIW, so

10. VIG and VIH, so
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PRACTICE SHEET # ONE

(1)

What is wrong with this proof?

THEOREM 1: IF NIA AND NIB, THEN NI (A + B).

STATEMENT REASON

1. A = NP 1. Definition of divides

B = NQ

2. (A + B) = NP + NQ 2. Substitution

3. = P (N + Q) 3. Distributive Law

4. N 1(A + B) 4. Definition of divides

(2)

Fill in the reasons:

THEOREM 1: IF NIA AND N IB, THEN NI(A + B).

STATEMENT REASON

1. A = NP 1.

B = 'NQ

2. (A+ B) = NP + NQ 2.

3. = N (P + Q) 3.

4. N I (A + B) 4.

II



PRACTICE SHEET # TWO

(3)

What is wrong with this proof?

THEOREM I.: IF N IA AND NIB, THEN N I(A + B).

STATEMENT :EASON

1. A = NP 1. Definition of divides

B = NQ

2. (A + B) = NP + NQ 2. Distributive Law

3. = N (P + Q) 3. Substitution

4. NI(A + B) 4. Definition of divides

(4)

Vi11 in the steps for this proof:

THEOREM 1: IF NIA AND NIB, THEN N ((A B).

STATEMENT REASON

1

2

3

4

1. Definition of divides

2. Substitution

3. Distributive Law

4. Definition of divides

217
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PWICTICE SHEET 11 THREE

(5)

What is wrong with this theorem?

THEOREM 1: IF NIA AND NIB, THEN N 1(A + B).

STATEMENT REASON

1. A = NB 1. Definition of divides

B = NC

2. A + B = NB + NC 2. Substitution

3. = + C) 3. Distributive law

4. N 1(B + C) 4. Definition of divides

(6)

Find the errors in this proof:

THEOREM 1: IF NIA AND NIB, THEN N + B) .

STATEMENT REASON

1. A = NP 1. Distributive law

B = NQ

2. P + Q = NP + NQ 2. Substitution

3. = N (P + Q) 3. Distributive law

4. N I (P Q) 4. Definition of divides
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THEOREM ONE: IF NIA AND N 1B, THEN N I (A + B) .

STATEMENT REASON



LONG LIVE THE KING: PART THREE

220

Harvey, Sidney; and EMIRP followed the bald-

headed eagle. He led them through dense jungle,

and finally they arrived at a remote spot on the

Hississippi River. "Quick! Iaside this cave,"

said the eagle.

There, sitting on the floor, was King Herman.

"Your royal highness. How glad we are to see you,"

said EMIRP. "All of Monkeyville thinks you are

dead."

"S-it down, my dear friends," said the King,

"and I will tell you all about it. I did not slip

over the cliff. I was pushed by Gronk. He tried

to kill me so that he could be King."

"That explains why he put us in jail -- to

keep us from discovering the truth and to throw

suspicion on someone else," said EMIRP.
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"But I still cannot understand why the ledge

broke before the birds reached you. My calculations

were flawless," said EMIRP.

"You're right," said the King. "When Gronk saw

that you were on the scene, he knew you would save

me. So he had his friends the vultures drop heavy

rocks on the ledge."

"But we thought you had fallen into the

Hississippi River and drowned," said Albert.

"I saw the ledge break,"

interrupted the eagle. "I flew

as fast as I could and grabbed

.

Herman just before he reached the _AAA".
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deadly water."

"Amazing!" said Mr. EMIRP.

"EMIRP, you must help me get rid of Gronk."

"Yes," said the eagle. "Gronk and his gorillas

have taken over. He forces the monkeys to gather

bananas 7 days a week, instead of just on Bananaday."

"What does he plan to do with all those bananas?"

asked Harvey.

"Sell them to Cuba. He plans to save

KIS,
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up enough money to live the rest of his life in

complete luxury.

"But don't the monkeys complain?"

"Those who complain are put in a concentration

camp," replied the bald-headed eagle. "Will you help

us?"

"It is late. Let me sleep on it. In the morning

I'll let you know what I plan to do," said EMIRP.

Before retiring for the evening, EMIRP gave some

problems to Harvey and Sidney. He did not want them

to get behind in their studies.

1. x 94) + 3x6)=x

2. x 998) + (7 x i)=

3. If P = 6, then (2 x 3 x P) + 1 =

4. If K = 2, then (K x K) -K+ 11 =

5. AB + AC =

6. 3T+ 3V =

7. IF A-- 3 )( 3 X =-

8. A At .1- AY =
9. If A = 15 and B = 6, then A + B =

10. If M = T and N = 6, then M + N =

11. IF =K AND K.= lc) men T t- S ==

41,



223

When the others awoke in the morning, EMIRP was

gone. They found a note which said:

tiot, 51i1A4
c96 4)-4iie' c.t,

arc 0.11,k2riattz e&

That evening as all the monkeys lined up to get their

weekly supply of bananas, EMIRP stepped in front of the

crowd. Gronk was about to have him arrested when EMIRP

spoke.

"Dear friends," he shouted. "Under the rule of King

Gronk our village has prospered. Things are better than

they have ever been. To properly honor our great King,

I proclaim tomorrow a holiday. We shall celebrate it

every year. It will be called G-Day. G for Gronk."

"Yeah," said Gronk's gorillas.



"We will have a big celebration. And I shall

personally build a monument to honor our great

King."

Gronk was quite happy. "Yes," he said, "it

shall be as EMIRP says."

Has EMIRP gone mad?

How could he praise such a

scoundrel as Gronk?

Has he betrayed.Herman?

We'll find out in the next episode.
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EMIRP made plans for the big celebration. A

large banquet table was made for Gronk and the

gorillas. Flags and banners were

made. Food was prepared. EMIRP had the entire village

working.

He then went to Gronk and said, "I am going to

leave now so that I can build the monument in privacy.

I don't want anyone to see it so that it will be a

big surprise."

"Oh goody, goody gumdrop,"

said Gronk. He liked surprises.
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When EMIRP got to his house, he began to work

immediately. "Lets see," he said to himself. "What

will I need?" It became obvious that he would have

to work the following problems:

1. If 3 is a factor of A + B, then A + B =

2. 3A + 3B + 3C =

3. ABA-AC +AD=

4. If T = 6, then T + 11 =

5. If K = 2, then V +. K =

6. Is 1,000,000,000,000,000,000,001 divisible by 3?

7. Is 360, 405, 117, 081, 333 divisible by 9?

8. If N =2, then (N x N) + 11 =

9. WHAT"' pRoue NuitA 13 E_I WILL Ift/i DE 35

10. What two prime numbers will divide 100?

11. Is 41-7 '1 (bin Fos, TE BE/4

At last, G-Day arrived. There was a parade,

sack races, and a banana pie-eating contest. When

it came time to eat, Gronk and his gorillas were seated

as guests of honor at the banquet table. "Oh great

King, we have prepared a meal fit for a King," said

EMIRP. A huge bowl of kool-aid was on the table, and

all of Gronk's gorillas were given a large glass of kool-

aid. "I propose a toast," said EMIRP as he raised his
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glass. "To Gronk. May he get everything that's coming

to him." The King and his gorillas drank the kool-aid.

"And I propose a toast," said Gronk. Their glasses

were filled again. "To Mr. EMIRP. To have recogniz:d

how great I am, he must be the wisest animal in the

jungle." Again Gronk and his gorillas drank the kool-

aid. "That's very good kool-aid," said Gronk. "What

flavor is that?"

"Mostly cherry," answered EMIRP, "but its a special

mixture fGr the occasion. A very special mixture."

The meal was fanastic. Banana roast, fried bananas,

whipped bananas, banana salad, banana soup, banana

cream pie, and banana ice cream sherbert.
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After the splendid dinner, EMIRP stood up and

said, "And now for the biggest surprise of all. Bring

it in boys!"

A group of monkeys wheeled in a large wooden statue

of Gronk. It was mounted on wheels.

It was the proudest moment in Gronk's evil life.

"You are a true genius, EMIRP," said Gronk, "You

shall be rewarded for this."

"I know," replied EMIRP. He then spoke in a loud

voice so that everyone could hear. "I would like to
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dedicate this monument to the happiness of Monkeyville.

7. have written a special poem for this occasion."

read,

Ile

"Violets are blue,

Roses are red,

Gronk is a crook,

and Herman's not dead."

At that moment a secret door opened in the belly of the

statue, and out hopped King Herman. They monkeys could

not believe it. Tears came to:their eyes. How happy

they were. He had been a kind and loving King. Gronk

was a demon. Then cheers broke out. "Hurray for Herman:
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Long live our, real King!"

"Quick," said Gronk to his gorillas. "Arrest

that imposter:"

But the gorillas could not move. It was as if

their legs had been frozen.

"Sorry bout that," said EMIRP. "But I spiked

the kool-aid with special pills which make it impossible

to walk."

"Hurray for EMIRP!" shouted the crowd.

Then King Herman spoke. "Take those devils to

jail."

"It will be our pleasure," shouted the crowd.

That night they celebrated by

burning the statue of Gronk. Happiness

returned to Monkeyville, The monkeys

were freed from the concentration camp

and Gronk and his gorillas were given

a 99-year sentence in jail.

We'll see what happened to Sidney and Harvey in

our next story.
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LESSON FOUR

THEOREM 2: If NIA and NI B, then N1(A-B).

The purpose of this lesson is twofold: (1) to see if the

students can write a proof of this theorem' without help. This should

be a transfer test, for they have not been taught that multiplication

distributes over subtraction. It should also ineicate whether or not

the student understood the strategy of the proof of Theorem 1. If

they did, they should be able to prove this result; (2) to tf.:ach the

students (if necessary) how to prove this result.

BEHAVIORAL OBJECTIVES:

(1) The student can write a proof for Theorem 2.

(2) The student can give numerical examples to illustrate

Theorem 2.

(3) The student can apply the theorem to given divisibility
facts.

MATERIALS:

(1) Sheets with the statement of Theorem 2 on them.

(2) Poster board with the proof of Theorem 2 on it.

(3) Four incorrect or incomplete proofs.

(4) Application drill sheets.

(5) Mastery test.

PROCEDURES:

Begin by writing some numerical examples on the board.

7128 and 7114, does 71(28 14)?

2116 and 214, does 21(16 4)?

101100 and 10160, does 101(100 - 60)?
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For each example ask the students the question. When three or four

examples have been given., ask, "Can anyone generalize from these

examples and state a theorem which these examples illustrate?" If

no correct response is given, say, "Can anyone state a theorem about

these facts which is similar to Theorem 1?" Point to the poster

board with Theorem 1 written on it. The students should have no

difficulty in forming the theorem, but if they do, state it for them

and give more numerical examples.

Then hand out a sheet with the theorem written on it. "Here is

the theorem. Can any of you write a proof for it?" Make sure the

poster board with the proof of Theorem 1 is facing the board and that

all other materials are covered. The object of this activity is to

see whether or not the students can write this proof without any

help. If some student3 do write a valid proof, ask them to turn it

face down. If not all the students write a valid proof, give a hint.

"How does this theorem differ from Theorem 1? The only difference

is a minus instead of a plus sign. In Theorem 2 we want to prove

something about (A-B) instead of (A + B)." If any students write a

valid proof, ask them to turn it over.

If some students have still not written a proof, give one last

hint. Turn the poster with the proof of Theorem 1 on it so that it

can be seen by the class. "The proof for Theorem 2 is very similar

to the proof for Theorem 1. See if you can use this proof to guide

you." Give them a chance to write the proof.

Then place the postet with the proof on the chalkboard tray and

go over the proof. Place it beside the proof of Theorem 1 so that
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the similarities and differences can be compared. Stress the follow-

ing points: (1) the only difference is the minus sign; since we want

to prove something about (A B), wt begin with that expression;

(2) the plan is to rewrite (A - B) as a multiple of N.

Then pass out the sheets which have Theorem 2 on it, have the

students put all other materials away, and quiz them on the proof of

the theorem. The poster board with the proof written on it will be

on the side wall. Tell them they can look at it if necessary, but

they should try to write the proof without looking. In this way

it will be obvious which students do not know the proof, for they

will have to turn their heads to see the poster. Go over the proof

again, then do work sheets #3 and #4. Repeat the quiz. Then do

wcrk sheets #5 and #6.

The proof should now be analyzed in terms of the strategy

employed. Use the word "plan" when discussing the strategy to the

students. Draw the following diagram on the board:

I PROOF

PLAN: WRITE (A -- B) AS

A MULTIPLE OF N

DEFINITION OF SUBSTITUTION DISTRIBUTIVE

DIVIDES PRINCIPLE LAW

"To prove Theorem 2 we used three basic things: the definition

of divides, the substitution principle, and the distributive law.

These were ideas we used, but HOW we used them was the crucial thing.

We had to apply each of them in the proper order. The proof itself

consists of, the reasoning procedures we used in writing dawn these
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facts in the correct order. We have followed a PLAN. The plan is

to write (A B) as a multiple of N. As we write each proof in this

unit try to think of the plan we are using. This might help you

learn to prove the theorems."

Finally administer the Mastery Test. This lesson should take

two days, so, hand out Parts Three and Four of "Long Live the King"

for homework.
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JOURNAL FOR LESSON FOUR

Thursday, April 24, 1969

After the Mastery Test for Theorem lwas administered, the teacher

proceeded to see if the students could prove Theorem 2 without any

further instruction. She began by writing three examples on the board:

3112 and 316. Does 31 (12 6)?

7128 and 717. Does 71 (28 7)?

10150 and 10110. Does 101 (50 10)?

The students responded with "yes", and one student asked, "But

what if the little number is first?" The teacher then made the restriction

that the first number must be at least as large as the second number. When

she asked for someone to state the theorem which these examples illustrated,

four studehts raised- their hands.. A student stated the theorem correctly.

The students were asked to prove theorem 2: if NIA and NI,B, then

NI(A - B). Eight of the ten students did so without any hints. The

other two wrote a correct proof when the teacher suggested that the proof

was similar to the previous proof.

The students then wo the four proofs which were either incorrect

or incomplete. All students were able to catch the errors. The period

ended.

ANALYSIS: Because of the ease with which the students wrote the proof

for Theorem 2, it was decided to administer the Mastery Test for Theorem 2

without much further study. It was also decided that only two (instead of
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four) of the incorrect proofs for Theorem 3 be given to the students.

We expected the students to learn the proof for Theorem 3 without

difficulty.

It also appeared that several students were becoming tired of

working with proofs and drill sheets. We decided to bring the computer

to class on Tuesday (there would be no school Monday because of a field

trip). This activity would provide a change of pace and could be used

to illustrate divisibility facts.

Friday, April 25, 1969

The teacher reviewed the proof of Theorem 2and distributed the

application sheets. Special note was made of the fact that A + B B

was equal to A. After having each student give an example of the

theorem, the Mastery Test was administered.

ANALYSIS: Two persons wrote incorrect proofs of theorem 2 on the

Mastery Test. Both had put in plus signs instead of minus signs.

Special attention would be given to this problem when the tests were

handed back to the students.



APPLY THEOREM 2 TO THE FOLLOWING FACTS:

1. If 3(15 and 316 then

2. If 10140 and 10(20 then

3. If 3IT and 3(W then

4. If M(P and MQ then

*5. If N RA + B) and NIB then

6. If T ((C + D) and T ID then

7. If W IA and WIB then

8. If 7 [35 and 7 114 then

9. If AIF and AI G then

10. If G ((A + B) and GIB, then

* What is A + B - B? Can you simplify it?
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(1)

What is wrong with this proof?

THEOREM 2: If NIA and NIB; then NI(A - B).

STATEMENT REASON

1. A = NP 1. Definition of divides

B = NQ

2. (A + B) = NP + NQ 2. Substitution

3,. = N (P + Q) 3. Distributive Law

4. NI(A - B)* 4. Definition of divides

(2)

What is wrong with this proof?

THEOREM 2: If NIA and NIB, then NI(A B).

STATEMENT REASON

1. A = NP I. Substitution

B = NQ

2. (A B) = NP - NQ 2. Distributive Law

3. = N (P - Q) 3. Substitution

4. NI (A - B) 4. Definition of divides



(3)

Fill in the reasons:

THEOREM 2: If NIA and NIB, then N1 (A - B).

STATEMENT REASON

1. A= NP 1.

B = NQ

2. (A B) = NP NQ 2.

3. =N (P - Q) 3.

4. NI (A B) 4.

(4)

What is wrong with this proof?

THEOREM 2: If NIA and NIB, then NI(k

STATEMENT

B).

REASON

1. A = NB 1. Definition of Divides

B = NQ

2. (A - B) = NB NQ 2. Substitution

3. = N (B - Q) 3. Distributive Law

4. NICA B) 4. Definition of Divides

239
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LESSON FOUR MASTERY TEST

1. Prove Theorem 2: If NIA and NIB, then NI(A - B).

STATEMENT. REASON

2-3. Give two numerical examp'es which illur'rate Theorem 2.

Apply theorem 2 -co the following facts:

4. If K IE and KIM, then

5. If AIR and A IT, then
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LESSON FIVE

THEOREM 3: IF NIA, NIB AND NIC, THEN NI(A + B + C)

The purpose of this lesson is to: (1) see if the students

can write a proof for this theorem without instruction; (2) teach the

proof to the students.

BEHAVIORAL OBJECTIVES:

1. The student can write a proof for Theorem 3.

2. The student can give-numerical examples which illustrate

Theorem 3.

3. Given three divisibility facts, the student can apply

Theorem 3.

MATERIALS:

1. Sheets with the statement of Theorem 3 on them

2. Poster with proof of Theorem 3 on it

3. Two incorrect proofs of Theorem 3

4. Application drill sheets

5. Mastery Test for first three theorems

PROCEDURE: The procedures should be almost identical with the

procedures of Lesson Four. Begin with numerical examples of Theorem 3.

316, 313 and 3112. Does 31(6 + 3 + 12)?

Then ask for the theorem. First ask them to write a proof without

further comment. If anyone is unable to do so, give several hints.
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Ask how the theorem differs from Theorem 1. And finally, suggest

that the proof is very similar to the proof of Theorem 1.

If all the students write a valid proof, administer the

Mastery Test on all three theorems. Otherwise, explain the proof

on the poster, hand out and discuss both the incorrect proofs and

the application sheets. Then administer the Mastery T.st.

Then discuss the similarities of the first three proofs. Ask

the students to compare them. It might be helpful to draw the

following diagram on the board:

Proof of
Theorem 1

Plan: express
A + B as a
multiple of N

froof of
Theorem 2

Plan: express
A - B as a

multiple of N

Proof of
Theovem 3

T
Plan: express
A + B + C as a
multiple of N

Definition o
Divides

Substitution
principle

Distributive
law
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JOURNAL OF LESSON FIVE

Friday, April 25, 1969

After the Lesson Four Mastery Test was given, one numerical

instance of Theoiem 3 was written on the board, a student immediaLely

generalized, and everyone was able to write a correct proof.

The students were then asked to prove all three theorems.

Everyone wrote perfect papers.

The Story on Indirect Reasoning was handed out for the next lesson,

ANALYSIS: Good lesson. The teacher skipped the sheets with

incor_ect proofs for Theorem 3, as well as the application sheets,

for it was clear that the students understood the theorem.

It was observed that three of the studtiits wrote down the

reasons first, and then went back to fill in the statements. We

decided' to ask all of the students tow they learned the proofs.
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Theorem 3 states that if NIA, NIB and NI C, then NI (A + B + C).

Apply this theorem to the following facts:

1. 717, 7114 and 7121, so

2. 23IA, 231B, and 23IC, so

3. TIR, TIS and TIW, so

4. (A + B)IF, (A + B)IG, and (A + B)IH, so

5. 1451W, 145IX and 1451Y so
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THEOREM 3: IF NSA, N I B and N I C, then N) (A + B + C) .

STATEMENT REASON
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1. Fill in the statements:

Theorem 3: IF NIA, NIB and NIC, then NI(A + B + C).

STATEMENT REASON

1. 1. Definition of divides

2. 2. Substitution

3. 3. Distributive law

4. 4. Definition of divides

2. What is wrong with this proof?

Theorem 3: IF NIA, NIB and NIG, thenN! (A + B + C).

STATEMENT. REASON

1. A = NP 1. Definition of divides

B = NQ

C = NA

2. (A + B + C) = NP + NQ + NA 2. Substitution

3. = N(P + Q + A) 3. Distributive law

4. NI(A + B + C) 4. Definition of divide
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MASTERY TEST ON FIRST THREE THEOREMS

Theorem 1. If NIA and NIB, then NI(A + B),

STATEMENT

Theorem 2. If NIA and NIB, then NI(A - B).

REASON

STATEMENT REASON

Theorem 3. If NIA, NIB, and NIC, then NI(A + B + C).

STATEMENT REASON
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Activity for Tuesday, April 29* 1969

This activity was prepared to give the students an opportunity

to verify both the theorems in the unit and divisibility criteria

with large numbers. Since the class has not met since last Friday,

it will alsO be interesting to see if the students will still

remember the proofs of Theorems 1, 2) and 3.

BEHAVIORAL OBJECTIVES: None

MATERIALS:

1. Olivetti-Underwood programma 101 desk computer

2. Quiz sheets for first three theorems

PROCEDURE: Divide the students into two equal groups. Each group

will'spend half the period with the investigator and half the preiod

with the teacher.

The teacher will quiz the students on the first three theorems

and discuss the plan for each proof.

The investigator will use the desk computer to have the students

verify the following:

1. Axiom 1: every whole number greater than 1 is divisible

by some prime number.

2. Divisibility criteria for 3 and 9.

3. Theorems 1, 2, and 3.

The idea is to encourage the students to rake up very large

numbers for verif&:ation purposes. For example: 110,000,001 is
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divisible by 3. Each student will be permitted to use the computer

for each of these activities.

The proof of Theorem 6 involves the expression

(2 x 3 x 5 . . . x p) + 1. This will give a prime number for

every prime from 2 through 11. When p. = 13, (2 x 3 x . . . x p) + 1 =

30,031. The computer will factor this number: 30,031 = 59 x 509.

The students will be asked to record this factorization on their

list of prime numbers. "We will have use for this number at a

later date."

The groups will change activities midway through the period.
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JOURNAL OF ACTIVITY

Tuesday, April 29, 1969

The students took a field trip to Milwaukee on Monday. Hence

there was a three-day interval since their last encounter with the

proofs.

The students were divided into two groups of five students.

The investigator worked with one group at the computer, and the

teacher worked with the other group.

A program was prepared for the Olivetti- Underwood programma 101

desk computer. Given any whole number, the computer would print out

the smallest prime number which divides it. In anticipation of

Theorem 6, the whole number 30,031 was factored by the- computer.

The students were asked to write the factorization down on their

list of prime numbers. Axiom 1 was then stated: every whole number

greater than 1 is divisible by some prime number. To verify the

axiom, each student was permitted to enter any whole number into

the programmed computer.

Each student was then permitted to verify the criteria for

divisibility by 3 and by 9. They were instructed to think up large

numbers whose digits summed to a multiple of 3, enter the number into

the computer, and observe the print out to see if if was in fact

divisible by 3. The same procedure was followed for 9. While one

group was working with the computer, the teacher tested the other

group on Theorems 1, 2, and 3. Halfway through the period the

groups switched activities.
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ANALYSIS: All ten students were able to recall the three proofs.

The activity with the computer was highly successful. The

students enjoyed the activity and displaTed an understanding

of the divisibility criteria.
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LESSON SIX

THE LAW OF CONTRADICTION

The purpose of this lesson is to prepare the students for

the proofs of Theorem 5 and Theorem 6.

BEHAVIORAL OBJECTIVES:

1. The student can write the opposite of a given statement.

2. Given a problem in which an assumption leads to a

contradiction, the student can apply the law of contradiction

to conclude that the assumption is false.

3. Given that a statement is false, the student can apply a fa6t

of logic to conclude that the negation of the statement is true.

MATERIALS:

1. Story of indirect reasoning

2. Sheets with examples of indirect reasoning

3. Sheets with statements and room for students to write

the opposite of these statements

4. Story on the Law of Contradiction

5. Law of Contradiction exercise sheet

6. Law of Contradiction Mastery Test

PROCEDURE: First discuss indirect reasoning in the Emirp Story.

The lights went out, and they listed four possibilities (there
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could be more, such as faulty wiring in the wall, etc but they

just considered these four).

1. Power failure

2. Fuse

3. Lamp

4. Light bulb

"What did they do? They listed four things it could be, and then

ruled out three of them so it had to be the light bulb. This is

called indirect reasoning. They did not prove that it was the

light bulb directly, but indirectly. They ruled the other possibilites

out."

"The same thing happened with the phone call, it could have been

anyone of five Johns, but they were able to rule out four of the

Johns. That left only Joh Bear."

Distribute the sheets with examples of indirect reasoning.

Discuss the first one, then ask them to do the rest at their

desks. The point which must be made is that all but one possibility

have been ruled out in each case. Distribute the sheets with five

instances of indirect reasoning. For item 1, write the following

on the board:
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In Chicago In Africa

false true

"Since Emirp proved that he was not in Chicago, he could not

have killed Mac the Fork. Note that the reasoning is indirect.

He proved that he was in Africa, which meant that he was not in

Chicago."

Do the same for the other four items.

Then write a statement and its opposite on the board:

Harvey is tall. Harvey is not tall.

Pass out sheets with statements and ask the students to write the

opposite of each. Circulate around the room as they work the

problem, correct any errors. Then point out that if a statement

is true, its opposite is false. For each of the five statements

on the sheet, ask, "If this statement is true (or false), what

can you say about its opposite?"

Then define a contradiction: a contradiction is an assertion

that both a statement and its opposite are true at the same time.

This cannot be the case:if one is true, the other is false.

Hand out the story about Sidney and Riley, After they have

read the story, discuss it. Ask if they can come to some

conclusion. They should conclude that Riley was wrong. Outline

the argument on the board.
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1. We know the scare was 112-0 after five'innings.

2. We assumed that the Mets scored four more runs.

3. .. We conclude that the final score was 116-0.

But the score was not 116-0.

Point out that since our assumption in (2) led to a false conclusion,

it must be false. Use this example to explain the Law of Contradiction:

If an assumption leads to a false statement, then the assumption is

false.

Distribute exercises on the Law of Contradiction and discuss

them orally. Then administek the Mastery Test.

If more than two persons are not masters at the 80% level,

additional exercises will have to be constructed. This, however,

is not anticipated.

1
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After discussing the story, the teacher distributed and

discussed the examples of indirect reasoning. For each example

she called on a different student, and each one gave a correct

response. One student
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raised a question about the story on indirect

reasoning: "Emirp eliminated only four Johns, but there are a lot

of Johns in the world." Another responded by saying it had to

be a John who knew Emirp, hence that narrowed it to just five Johns.

A statement and its opposite were written on the board. It

was pointed out that if a statement is true, then its opposite must

be false. Sheets were then distributed and the students were asked

to write the opposites of five statements. Two person wrote "thin"

and "skinny" as the opposite of "fat." These were discussed and it

was decided that "not fat" was a more precise opposite.

The story of the baseball game was distributed, the students

read it, and then it was discussed. Two students wrote that Riley

was wrong, five wrote that theMets scored more than four runs, and

three said that the score was not 116-0. The teacher wrote the

reasoning on the board, but failed to point out the Law of Contradiction.

The exercises on the Law of Contradiction were then discussed.

but the law was not stated explicity. One example caused difficulty,

#4. The students wanted to know why the assumption led to the

contradiction. They were not willing to accept it as given.
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The Mastery Test was then administered, and corrected immediately.

Four persons missed item 6, the statement of the Law of Contradiction.

It had not been stated explicity, and so the teacher presented it

to the class at this time.

ANALYSIS: Except for the failure to explicit) state the law of

contradiction, the lesson went as planned. We were satisfied that

the students understood the law by the end of the discussion.
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INDIRECT REASONING

1. Mac the Fork was murdered in Chicago the night of September 3, 1932.
The police suspected Emirp of the crime. But Emirp had an alibi:

he proved that he was in Africa on the night of September 3, 1932.

What did the police have to conclude?

2. Either NI(A + B) or N-I(A + B). Sidney discovered that NI(A + B)

was not correct. What can he conclude?

3. The mechanic looked at Emirp's Monkeymobile and said, "Your car

will not run. It is either the fuel system or the electrical
system which has gorecnthe blink." He checked the fuel system

and everything was O.K. What could he conclude?

4. Mrs. Gornowicz gave a mastery test and nine of the ten papers had

names on them. But one did not have a name on it. How did she

determine whose paper it was?

5. Harvey had a pink rash all over his head and trunk. The doctor

said, "It is either measles, chicken pox, or you are allergic to

something." Tests showed that it was not measles or chicken pox.

What could the doctor conclude?

0
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Law of Contradiction

1. We know that A = B. We do not know if C = 3. So we assume that

C = 3. This leads us to conclude that A B. What can you conclude?

4

2. We know that NIA. We do not know whether or not NIB. So we assume

that NIB and discover that this leads u: to conclude that NfA.

What can we conclude?

3. We know that A + B = NP. We do not know whether or not N = 7. So

we assume that N = 7 and find out that A + B NP. What can you

conclude?

4. We know that John Dog is home. But we do not know if he is eating.

We assume that he is eating and this leads us to conclude that he

is not home. What can you conclude?

5. We know that Harvey is an elephant. We assume that A = B and this

leads us to conclude that Harvey is not an elephant. What can we

conclude?

6. We know that NIA. We assume that NIK and find that N4A. What

can we conclude?

7. We know that Emirp is a fat elephant. We assume that he is a fast

runner and this leads us to conclude that he is not fat. What can

we conclude?
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LAW OF CONTRADICTION MASTERY TEST

Write the opposite of each of the following statements:

1. Elephants are big.

2. Monkeys eat bananas.

3. Lake Mills is a large town.

4. Sidney can run fast.

5. Lions eat lettuce.

6. An assumption leads to a contradiction. What can we conclude?

7. We know that A = B. We assume that FIA. This leads us to conclude

that A 0 B. What can you conclude?

8. We know that 3 + 3 = 6. We assume that NI(Z + W) and this leads

us to conclude that 3 + 3 0 6. What can you conclude?

9. If the statement "John is a dog" is true, what can you say about

the statement "John is not a dog"?

10. If the statement "NI(A + B)" is false, what can you say about

"N4 (A + B) "?
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Statement Opposite

1. A = 3 1.

2. NJ-(A + B) 2.

3. 2 + 2 = 6

4. The cat is fat.

5. Jack is strong.

3.

4.
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INDIRECT REASONING

It was Bananaday evening and Harvey and Sidney were staying overnight

with Mr. Emirp. They were sitting on the couch. Emirp was reading the story

of The Three Little Pigs: "Not by the hair of my chinny-chin-chin, will I

open the door so that you can come in."

Suddenly the lamp went out, and the house was completely dark.

"Oh, oh," said Sidney. "What's wrong?"

"I don't know," said Emirp. "But we can figure it out if we are clever

enough. What could possibly have happened to cause this light to go out?"

"Maybe there has been a power failure and the lights are out all over

town," suggested Harvey.

140m E
SWEET
NOME
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"Or maybe a fuse blew in the house," said Sidney.

"It could even be that something is wrong with this lamp," added

Harvey.

"I'll bet it's the light bulb," said Sidney.

"Very good," said Emirp. "We have four possibilities:

1. A power failure.

2. A fuse.

3. The lamp.

4. The light bulb.

But which one is it?"

Harvey looked out the window. "Look! The lights are still on in the

other houses. So it is not a power failure."

"Very good observation," said Emirp. By this time he had found a

candle and had lit it.



"Let's check the fuses," he said. They went to the fuse box. All

the fuses were good. "It is not a fuse," said Emirp.

"Then it is either the lamp or the light bulb," said Sidney. "How

can we tell which one is bad?"

They all thought. Then Harvey spoke. "I know. Get another light

bulb and see if it works in the lamp. If it lights up, then the old bulb is

bad. If it does not light up, then it must be the lamp."

"Good idea," said Emirp. He got a new bulb and tried it in the lamp.

"It works," said Emirp.

"So it must be the old light bulb," said Sidney.
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"Yes. But do you realize what we have done?" asked Emirp excitedly.

"No," answered Harvey and Sidney together.

"We have used indirect reasoning to prove that the light bulb had

burned out. We did not show that the bulb was bad directly, but we elimin-

ated all the other possibilities: it wasn't the lamp, or the fuse, or a

power failure, so it had to be the bulb."

"Well I'll be a monkey's uncle," said Sidney.

"And I'll be an elephant's uncle," said Harvey.

They sat back down on the couch and Emirp continued the story. "Not

by the hair of my .
II

The telephone rang. "Rin-n-n-g-g-g."

"I'll get it," said Sidney.
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"Hello. This is the home of the Great Emirp."

"Hello," said a voice on the other end of the line.

"This is John. Will you give Emirp a message for me. Tell him that

I'll see him tomorrow at McDonald's for lunch. 12:00 sharp. Good bye."

And the voice hung up.

"Who was it?" asked Emirp.

"John said that he would meet you at McDonald's for lunch tomorrow,"

said Sidney.

"John who?" asked Emirp.

"I don't know. He hung up before I could ask," said Sidney.
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"Gosh, what will I do? I don't know which John it was. I know five

Johns," said Emirp.

Then Harvey got a brilliant idea. "Maybe we could determine who it

was by indirect reasoning. You know. Maybe we could rule out four of your

friends named John. Then it would have to be the other John."

"Well, there is John Bear, John Horse, John Elephant, John Dog, and

John-John."

"It can't be John-John," said Sidney. "He is in Greece."

Then Emirp said, "And it can't be John Dog, because he doesn't like

hamburgers."

"It can't be John Elephant," said Harvey. "He is on a vacation in

Biami Beach."

"And John Horse is in the horsepital with a broken leg," said Emirp.
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"So it must be John Bear," they all shouted at once. "Indirect

reasoning triumphs again."

They finished the story of The Three Little Pigs, had a good night's

sleep, and the next day Emirp had lunch at McDonald's with John Bear.

Which just goes to show that indirect reasoning can be very helpful.
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The Lake Mills Monsters were playing the Monkeyville Mets

in baseball. Sidney and his little brother Riley went to the

stadium to see the game.

$

The slaughter started in the first LnnLng when Emirp hit

a grand-slam home run. At the end of five innings the score

was 112-0 in favor of the Mets. Suddenly Riley said, "Hey, Sidney.

Don't forget that you have to go to the Royal Palace to help the

King with his bookkeeping this afternoon."



"I almost forgot," admitted Sidney. "Keep track of how many

more runs we score," he said as he left the stadium.

That night at the supper table Riley said,"We scored 4 more

runs after you left. Emirp hit another home run." Sidney then

reasoned as follows:

(1) I know that the score was 112-0 after five innings

(2) I assume that we scored 4 more runs

(3) The final score was 116-0

Just then the newspaper monkey delivered the evening paper.

Sidney read the sports page and it said that the final score was

116-0. He went to the T.V. set and waited for the sports news.

"Yes sir," said the announcer,"the Monkeyville Mets demolished

the Lake Mills Monsters today by a score of 117-0. After five

innings the score was 112-0."

"Hum-m-m-m," said Sidney. "I know the following:

271
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(1) After five innings the score was 112-0

(2) I assumed that we scored 4 more runs because Riley said so

(3) I therefore concluded that the final score was 116-0.

But I now find out that the final score was 117-0 and not 116-0."

What conclusion can Sidney make?

Can you spot a contradiction?
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LESSON SEVEN

THEOREM 4: If NfA and NIB, then Nir (A + B)

The purpose of this lesson is teach the students to write the proof

of this theorem.

BEHAVIORAL OBJECTIVES:

1. Given appropriate divisibility facts, the student can

apply Theorem 4.

2. The student can give numerical examples to illustrate

Theorem 4.

3. The student can write a proof for Theorem 4.

MATERIALS:

1. Proof of Theorem 4 oh poster

2. Theorem 4 application sheet

3. Six incorrect proofs of Theorem 4

4. Sheets with statement of Theorem 4 (for writing proof)

5. Story of "Sleeping Beauty" for review purposes

PROCEDURE: Write the theorem on the board:

Theorem 4: If NIA and NIB, then Nif(A + B)

To determine how well the students understand the use of letters,

ask each student to write a numerical example to illustrate Theorem 4.

Record how many are able to do so. You might have to review what a

numerical example is by giving one for Theorem 1.

Write several examples on the board, then explain that the proof



will be an indirect proof. "We will show that when we assume that

NI(A + B), we get a false statement. This will mean that NI(A + B),

our assumption, is false." Write the proof using a numerical example.

Pose the question:

4 115 and 4116, does 41(15 + 16)?

"We know that 4 will not divide 31, but even if we didn't we could

prove that it didn't. We are doing this so that we can see how to prove

theorem 4."

STATEMENT

1. 4 1(15 + 16) 1.

2. 4116 2.

3. 41(15 + 16 16) 3.

REASON

Assume

Given

Theorem 2
or 4115

4. But 4,5 4. Given

5. 41-(15 + 16) 5. Law of Contradiction

Stress that the proof is indirect, and that we use the Law of Contradiction.

The strategy is to assume the opposite of what we are trying to prove

and derive a false statement.

Beside this proof write the proof for the general theorem. Elicit

reasons and statements from the student. Distribute sheets #1 and #2

and let the students search for the errors in the proofs. Discuss.

Then pass out sheets with theorem 4 on it and quiz them on the proof.

Go over the proof again. Repeat with exercise sheets #3 and #4.

Quiz. Repeat with application sheet.

Stress that the strategy or plan of proof is to assume N t(A + B)

and derive a contradiction. Then administer the Mastery Test.
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With fifteen minutes remaining in the period, the teacher started

Leskon Seven. Theorem 4 was written on the board, and all ten students

were able ti. tirize a numerical instance of the theorem. The following

proof was then written on the board.

IF 4 115 AND 4116, THEN 4 t (15 + 16)

STATEMENT REASON

1_ 41 (15 + 16) 1. Assumption

41 16 2. Given

3. 41(15 + 16 - 16) 3. Theorem 2
or 41 15

4. But 4f 15 4. Given

5. 4t(15 + 16) 5. Law of Contradiction

The proof was completed as the period ended. Some of the students

were confused. "But we already know that four will not divide 31,"

was one response uttered as the students left the room.

ANALYSIS: The main point of confusion appeared to be that the students

knew that the assumption "41(15 + 16)" was false to start with.

It was decided to prove a result which was not immediately evident:

IF 7t77,775 AND 7142, THEN 7t(77,775 + 42)
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Thursday, May 1, 1969

The mastery test on the law of contradiction was handed back and

discussed. The following was then written on the board:

477,775 AND 7142, DOES 71(77,775 + 42)?

STATEMENT REASON

On the next panel the general theorem was written

IF Nt A AND NIB, THEN Nit (A + B)

STATEMENT REASON

The teacher then explained that she would show that 711*(77,775 + 42)

without adding the numbers and dividing by 7. "This will show us how

we can prove it for any number N, A and B." She wrote each statement

on the board, and students provided each reason. The presentation was

clear and the teacher explained the Law of Contradiction quite clearly.

The students then volunteered to supply both statements and the reasons

for theorem 4. No mistakes were made.

The students were then asked to copy the proofs. They were then

given two incorrect proofs to correct. Everyone did so. They were

then quizzed and only one student needed help. The students were asked

how they learned the proof so rapidly. All said that they memorized

the reasons first.

The application sheet was distributed and completed without error.

The teacher did not work an example; only one student needed help in

getting started.

The Mastery Test was then given and "The Sleeping Beauty" was
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distributed.

ANALYSIS: The presentation worked very well. Each student had a

perfect score on the Mastery Test.

It was decided not to u8e the other exercise sheets. The students

would be given the chance to prove theorem 5 on Friday. If time

remained, the class could play the game of PRIME.
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SHEET #1

(1)

THEOREM 4: IF NfA AND NIB, THEN N-I-(A + B)

STATEMENT REASON

1. NI (A + B) 1. Assume

2. NIB 2. Given

3. NIA 3. Theorem 2

4. But N-I-A 4. Given

5. Ni-(A + B) 5. Law of Contradiction

(2)

THEOREM 4: IF N-1-.A AND NIB, THEN 11.1.(A + B)

STATEMENT REASON

1. N i(A + B) 1. Assume

2. NIB 2. Theorem 2

3. NIA 3. Given

4. NI-A 4. Theorem 2

5. Ni(A.-f- B) 5. Law of Contradiction

-:



SHEET #2

(3)

THEOREM 4: IF N+A AND NIB, THEN N-I-(A + B)

STATEMENT REASON

1. NI(A + B) 1.

2. 2. Given

3. NIA 3.

4. 4. Given

5. N+ (A + B) 5.

(4)

THEOREM 4: IF N +A AND NIB, THEN N-I-(A + B).

STATEMENT REASON

1. 1. Assume

2. NIB 2.

3. 3. Theorem 2

4. NIA 4.

5. 5. Law of Contradiction
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(5)

THEOREM 4: IF Ni-A AND NIB, THEN NT(A+B)

STATEMENT REASON

I. I. Assume

2. 2. Given

3. 3. Theorem 2

4. Given

5. Law of contradiction



SHEET #4

(6)

THEOREM 4: IF SA AND NIB, THEN NI-(A + B)

STATEMENT

1 . 1N i (A + B) 1.

2. NIB 2.

3. NIA 3.

4. But N 4.A

5. N-1, (A + B)

4.

REASON

5.

281
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THEOREM 4: IF N-I-A AND NIB, THEN N4.(A + B)

STATEMENT REASON
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APPLY THEOREM 4 TO THE FOLLOWING DIVISION FACTS:

1. 316 and 3f8 so

2. If AfG and AJH then

3. 21 (2 x 3 x 5) and 2t1, so

4. 31 (2 x 3 x 4) and 3f1, so

5. 71(2 x 3 x 5 x 7) and 7f1, so

6. 214 and 2f7, so

7. WfM and W1 K, so

8. Pl(P x Q) and Pfl, so

9. MIN x N) and Mil, so

10. 111(2 x 3 x 5 x 7 x 11) and llil, so



LESSON SEVEN MASTERY TEST

1. Write a proof for Theorem 4:

If N4A and NIB, then NI-(A + B).

STATEMENT REASON

284

2. Give two numerical examples which illustrate the meaning of Theorem

4:

Apply Theorem 4 to the following divisibility facts:

3. 3110 and 316, therefore . .

4. If TIW and TIC, then . .
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THE SLEEPING BEAUTY

"Look at this proof!" said Emirp to Harvey and Sidney." Can you

give the reasons for each step?"

IF NIA and then 1\VA-fa).

STATEMENT 'REASON

1. A ---NP 1.

2, f}-t8 -7.- 1VP A161 2,

3. N 3.

4. .1. NI (A +3)

While they thought about it, Emirp made an onion sandwich. Then

Harvey and Sidney handed him their reasons. "Very Good, Harvey. You

have them ct-Ixrect. But Sidney ha; made some errors. Can you find them?':

IF NIA and NOB) tbten N ( (A +6).
srAT-EnitEtvr RCA-SON

ett nit fort ,r divides

2. A+B = NP t NGZ 2. diSTRibbitivc.... 14k)

MCP-i-6?) 50.8sTrrunc-K.,

4, NI (A +3) offonic
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Just then there was a great deal of excitement outside. "Emirp,

Emirp," shouted a handsome young elephant.

"Whats going on 11 asked Emirp.

"Well, I was walking through a deserted part of the jungle when I

saw a small cottage. I looked inside, and there was the most beautiful

female elephant in the world."

"Wunnerful, Wunnerful," said Emirp.

"Not so," said the elephant."She is fast asleep in a deep trance.

Nothing will wake her up. What does this mean, oh great wise one?"

Emirp thought, then he said, "I once read a story about a beautiful

princess. A wicked witch put a spell on her. She pricked her finger

with a needle and went into a deep sleep. Nothing could awaken her.



287

Then one day a prince came by and kissed her. The princess woke up.

They were married, and they lived, happily ever after."

The nelqs spread through the jungle like wildfire. All the

unmarried male elephants raced to the cottage. Each hoped that his

kiss would awaken the beautiful elephant.

But Emirp and the boys continued the math lesson. "0.10! said

Emirp, "write a proof for this theorem: if N/A, N/B, and N/C, then

N/(A4-B4C)."

While the boys were working on the proof, Emirp went to the

refrigerator and made a garlic and limberger cheese sandwich.



This is what Harvey wrote:
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IF NIA )W113 and NIC Then NICA+13+0 .

S'i-Aremettr R E/4 SO f4

I = NR I. Definiftori of divides

13-= N T

C, = N

2. = NR -t- N r N 2. 5 tioST-i-ruft'om

3, ----n(R-vr +A) 3. bi57-#2.113u-uE_ LAW

1 N ( +B 4. De4,14-ioti of-chvidex
Can you find a mistake?

After Mr. Emirp corrected the proofs, someone knocked on the door.

It was John Dog.

"Have you heard the news? "asked John Dog. "Every elephant in the

jungle has kissed the Sleeping Beauty, but she still sleeps. You must

come and try to save her."

Emirp blushed:"oh, I'm too bashful".
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"Nonsenselthink of the girl. She may sleep forever if you don't try.

You are her last hope. Besides, you could use a wife."

"Well, "said Emirp, "I'll go if Sidney can find the errors in this

proof."

IF NIA and NIB Then NI (As -13)
STATE, eN1T Re-A-SONt

I. Cle-cin i Om dI. A= NV
---- NW

a. A413= WY+ AlW
3. z- N(1/114/)
A .

subsTiruTi6N
3. Disneit307-k LAO

4. .;1 scti,4.i,a,z,

Sidney spotted the errors. Can you?

An hour later they all arrived at the cottage deep in the jungle.

Hundreds of animals were waiting to see if Emirp could break the evil

spell and awaken the Sleeping Beailty. He bent over and kissed het.



The Sleeping Beauty woke up.

"Hurray for Emirp! shouted the animals. John Dog stepped between

them and said,

"This shy fellow is the one who broke the evil spell. Now you can

marry him and live happily ever after.

"Oh no,"said the Beauty. "That guy has the worst smelling mouth

in the world. When he kissed me I nearly died.. No wonder I woke up."

She stormed out of the cottage.

Now, what do you think is the moral of this story?

A. One must be careful when writing mathematical proofs.

OR

B. If you eat onion, garlic, and limberger cheese
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sandwiches, be sure to brush you teeth before you kiss a Sleeping Beauty.
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LESSON EIGHT

THEOREM 5: IF Nit A AND NIB, THEN N f(A B).

The purpose is (1) to see if anyone can prove this theorem without

instruction; (2) to teach the proof of the theorem.

BEHAVIORAL OBJECTIVE:

1. The student can write a proof for Theorem 5.

2. Given appropriate division facts, the student can apply

Theorem 5.

3. The student can give numerical examples to illustrate

Theorem 5.

MATERIALS:

1. Practice sheet

2. Mastery test for theorem 4 and theorem 5

PROCEDURE: Review the proof of theorem 4, being sure to stress the

strategy involved in eliminating the B from A + B, i.e., subtract B.

Then write theorem 5 on the board and give one numerical example. Pass

out quiz sheets and ask them to prove it. Remind them that they may

use anything they know to be true. This proof requires the application

of Theorem 1 (instead of Theorem 2 which is used in proving Theorem 4;

otherwise the proofs are identical).

After they have had an opportunity to write the proof without

any help, put the poster with the proof of Theorem 4 on the board.
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Suggest that the proof is very similar.

Finally, direct their attention to how we got rid of the B in

A + B. Say, "In this case, Theorem 2 worked, didn't it?"

Collect she papers as correct proofs are written. Use the

posters to compare the two proofs. Have them copy it once, then

administer the Mastery Test (for Theorem 4 and Theorem 5).
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Friday, May 2, 196 9

The story of "The Sleeping Beauty" was discussed. Then the teacher

'reviewed the proof of Theorem 4 using the poster. She then wrote

Theorem 5 on the board and asked each student to write a numerical

example to illustrate Theorem 5. Everyone was able to do so, but two

students subtracted the larger number. The teacher explained that the

examples were correct if we were dealing with negative numbers.

The students were then given sheets of paper and asked to write a

proof for Theorem 5. Everyone did the same thing: Theorem 2 was

applied instead of Theorem 1. No other mistakes were made. The teacher

said, "Everyone has one mistake. The proof is very similar to the proof

of Theorem 4. Think through each step of the proof and see if you can't

find your mistake." Two students made the correction.

A second hint was then given: "In Theorem 4you had NI(A + B) and

you wanted to get rid of the B and so you subtracted using Theorem 2. "

Six more students then corrected their proofs. Two students had to have

it explained to them.

The teacher then wrote the proof on the board and explained how

this proof differed from the proof of Theorem 4.

The Mastery Test was administered.

ANALYSIS: The lesson went as planned and all students wrote correct

proofs on the Mastery Test.
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The students were not able to prove Theorem 5 without help.

They had been able to write the proof of Theorems 2 and 3 without

help, but the reasons are the same as the reasons for Theorem 1.

One of the reasons in the proof of Theorem 5 is different from the

corresponding reason in the proof of Theorem 4. Since the reasons

remained the same for the other theorems, they may have reasoned thAt

they should remain the same in this case.

Each person had correct statements.



PRACTICE SHEET

THEOREM 5: IF N 1- A AND NIB, THEN N 4 (A B)

STATEMENT REASON

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.
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MASTERY TEST

THEOREM 4: IF N 4. A AND NIB, THEN N + (A + B) .

STATEMENT REASON

THEOREM 5 : IF N -1- A AND NIB, THEN N -I- (A B) .

STATEMENT REASON
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ACTIVITY: The game of PRIME can be played any time before the lesson

on Theorem 6.

The game is very similar to BINGO. Each student is given a sheet

of paper with a 5 x 5 array of numbers on it. For example,

R

77 51 30 38 2 U

19 50 23 71 74

21 81 85 93 13

51 47 46 64 99

99 55 96 83 31
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Each column of the array is identified with a letter of the word

"PRIME." The teacher has 60 small transparent slips (12 for each letter)

from which she randomly drsws a transparency. She then reads it and

places it on an overhead projector so that each student can see it

For example: P: a two-digit prime number.

The student looks in the P column, and if he has a twodigit

prime number in the P column, he can cross it out. As in BINGO, the

first person who crosses out an entire column, row, or diagonal is

thf: winner.

The following are the descriptions used on the transparent slips:

TWO-DIGIT ;NUMBER WITH A`

COMPOSITE NUMBER fN THE

ONES PLACE

R: A PRIME NUMBER LESS
THAN 20

A NUMBER LESS THAN 2

I: A COMPOSITE NUMBER

M: THE SMEMESTPRIME
NUMBER

AN EVEN PRIME NUMBER

I: A. TWO-DIGIT COMPOSITE
WITH BOTH OF ITS DIGITS
PRIME NUMBERS

R: A PRIME. NUMBER GREATER

'MAN 80

.A TWO-DIGIT NUMBER WITH A
PRIME IN. THE TENS PLACE

E A TWO-DIGIT NUMBER WITH
A. PRIME NUMBER IN THE
ONES PLACE

E: A COMPOSITE NUMBER
DIVISIBLE EY 3

R: A TWO-DIGIT NUMBER WITH
A COMPOSITE NUMBER IN THE
TENS PLACE

M: A TWO-DIGIT NUMBER WITH
A PRIME NUMBER IN THE
ONES PLACE

P: A TWO-DIGIT NUMBER, THE
SUM OF WHOSE DIGITS IS A

COMPOSITE NUMBER

I: A NUMBER LESS THAN 2

13,: A TWO-DIGIT NUMBER IF
EITHER OF ITS DIGITS IS
A PRIME NUMBER

P: A TWO-DIGIT NUMBER, THE
SUM or WHOSE DIGITS IS A

PRIME-NUMBER

R: A TWO-DIGIT COMPOSITE
NUMBER WITH BOTH OF ITS

DIGITS PRIME NUMBERS
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R: AN ODD PRIME NUMBER M: A TWO-DIGIT COMPOSITE NUMBER

I: A TWO-DIGIT NUMBER IF EITHER P: A PRIME NUMBER GREATER THAN
OF ITS DIGITS IS A PRIME 70

R: A PRIME NUMBER BETWEEN 30 M: A TWO DIGIT NUMBER, THE SUM
AND 60 OF WHOSE DIGITS IS A

COMPOSITE NUMBER
E. A SINGLE-DIGIT PRIME NUMBER

R: A TWO-DIGIT NUMBER WITH A
M: A NUMBER LESS THAN 2 COMPOSITE NUMBER IN THE

ONES ?LACE
M: A PRIME NUMBER

R: A NUMBER LESS THAN 2
M: A PRIME NUMBER LESS THAN

24 E: AN EVEN PRIME NUMBER

P: A TWO-DIGIT COMPOSITE E: A TWO-DIGIT COMPOSITE
NUMBER NUMBER

I: A PRIME NUMBER BETWEEN 50 E: A TWO-DIGIT NUMBER, THE
AND 60 SUM OF WHOSE DIGITS IS PRIME

I: A PRIME NUMBER P: A COMPOSITE NUMBER

I: AN ODD PRIME NUMBER P: A TWO-DIGIT PRIME NUMBER

P: .A NUMBER LESS THAN 2 E: THE LARGEST PRIME NUMBER
LESS THAN 100

R: A COMPOSITE NUMBER
P: A SINGLE-DIGIT PRIME

E: A PRIME NUMBER BETWEEN NUMBER

90 AND 100
R: A TWO-DIGIT NUMBER, THE

I: A TWO-DIGIT NUMBER WITH SUM OF WHOSE DIGITS IS A

A COMPOSITE NUMBER IN THE COMPOSITE NUMBER

TENS PLACE
lilt A SINGLE DIGIT. PRIME

M: A TWO-DIGIT PRIME NUMBER NUMBER

P2 THE SMALLEST PRIME
I: ANY PRIME NUMBER

I: AN EVEN PRIME NUMBER
M: A TWO-DIGIT NUMBER WITH A

COMPOSITE IN THE TENS PLACE

P: A PRIME NUMBER
E: A PRIME LESS THAN /2

M: A PRIME NUMBER GREATER
THAN 85

E: A COMPOSITE NUMBER

M: A PRIME NUMBER BETWEEN
60 AND 80

I: A TWO-DIGIT NUMBER, THE SUM
OF WHOSE DIGITS IS EVEN
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JOURNAL ON THE GAME OF PRIME

Friday, May 2, 1969

With twenty minutes remaining in the period, the class played

PRIME. The teacher explained how the game was played and drew

several slips to illustrate the procedure. She reviewed all ways of

winning: diagonally, vertically, and horizontally. The slips were

placed on the overhead projector so the entire class could see them.

Three games were completed.

ANALYSIS: Because of time considerations, and because the students

had studied prime and composite numbers earlier in the year, it had

been decided that we would not teach the lesson on prime numbers.

Hence this activity helped bridge the gap created by the exclusion

of the lesson on prime numbers. It was also highly motivational.
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LESSON NINE

THE MEANINGS OF "PROOF"

The purpose of this lesson is to teach that there are different

meanings of the word "proof," and that there are different ways to prove

statements.

BEHAVIORAL OBJECTIVES:

1. Given a list of propositions, the student can identify an

appropriate way to verify each oposition.

2. From a list of examples, the student can identify those

which make a poor choice of authority.

3. The student can give an example of how our senses are

unreliable.

MATERIALS:

1. "Seeing is Believing" story (which contains optical

illusions).

2. List of propositions

3. Examples of authority

4. Mastery Test

5. Chart with the goals of the unit

PROCEDURES: Hand out the story and let the students read it. Discuss

it in class and write the three basic ways of "proving" propositions on

the board. "We have now proven five different theorems by using careful



304

reasoning. In mathematics we try to prove many things by using logic

and reasoning. We also prove things outside the math classroom. That

is, the word "prove" has different meanings. We have seen in the story

that we can prove things by reasoning, by using our senses, and by

consulting a reliable authority."

"SENSES: In everyday situations we often use one or more of our five

senses to prove things. For example, suppose John comes into the

classroom and says, "Teacher, Billie is writing on the wall in the room

across the hall." The teacher insists that Billie would never do a

thing like that. "O.K.", says John, "I'll prove it to you. Come with

me!" They walk across the hall and see Billie writing all over the

wall."

"In this case John proved his statement by relying upon his and the

teacher's ability to see."

"There are four other senses. Can you name them?" Write them on

the board, then ask the students to provide a hypothetical story (like

the one just given) to illustrate how each of the remaining four sense

could be used to prove something. Then use the optical illusions to

point out that our senses can deceive us.

AUTHORITY: It is impossible to directly verify every fact we need to

know in order to get along in this world. It is therefore necessary

to rely upon authorities for much of what we know. For example, give

an historical example. Columbus sailed to America in 1492.

Then ask the class to name some different authorities. Make sure

that the following are listed: dictionaries, history book, math books,

(other books), encyclopedias, experts, other people, newspapers and
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and television. The computer is also a good example.

Distribute sheet with examples of using authorities and discuss.

The point should be made that one must be careful in selecting an

authority. Authorities can be wrong, just as our senses can.

REASONING: "We also use reasoning to prove things in everyday

situations. For instance, suppose I am in an office building and I

see people entering the building with wet umbrellas. I conclude

that it is raining outside." Then write an analysis of the reason-
.,

ing invclved on the board:

1. I know that if people enter the building with wet umbrellas,

then it is raining outside.

2. I see people entering the building with wet umbrellas.

3. I conclude that it is raining outside.

We often use careful reasoning without realizing it."

Also point out that the proofs of the five theorems are ex-

amples of reasoning. Mathematical statements need a logical proof

(stress).

"In order to prove something, we must have something with which

to work. We started with an understanding of t1;?. set of whole numbers,

a definition of divides, the substitution principle, and the dis-

tributive law. With these we were able to prove Theorems 1, 2, and

3." Sketch the following ,ram on the board.

Whole Numbers Definition of Substitution Distributive

divides principle law
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Then present a brief discussion of the nature of mathematical

proof. Explain that we may use the following things to help us prove

a mathematical theorem:

1. definitions

2. principles, laws, or axioms which we accept to be true
without proof

3. previously proved theorems

The proofs of Theorems 4 and 5 illustrate how a previously

proved theorem can be used to prove another theorem. Draw a box for

Theorem 4 above the box for Theorem 2 and a box for Theorem 5 above

the box for Theorem 1 in the diagram as follows:

'THEOREMS ITHEOREM 4

THEOREM 7] I THEOREM 2

Stress that we apply logical reasoning to these things in. order

to derive a proof for the theorem. It is not expected that the

students will hive a complete understanding of proof, for this will

only come as a result of continued experiences with proof.

Then distribute the sheets with statements to prove on them.

Let them answer each question, then discuss in class. Make certain

that the-responses are reasonable. For example, to prove that the

earth is shaped like a sphere, it would not be reasonable to say that

you could get in a space craft and look for yourself. A more reason-

able way would be to rely upon an authority.

Administer Mastery Test.

Hand out story on prime numbers for the next lesson.
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JOURNAL FOR LESSON NINE

Monday, May 5, 1969

The chart with the goals of the unit was put on the board and

discussed. The stories were distributed and the students read them at

their desks. The teacher asked for the three ways of knowing that some-

thing is true and wrote them on the board as the students responded.

The presentation went as planned except for one example. The example

of reasoning caused some confusion and many remarks. In response to

the statement, "If people enter the building with wet umbrellas, then

it is raining", the students made the following kinds of remarks:

"It might be snowing."

"It may have just stopped raining."

"Someone might dump water from a window."

ANALYSIS: The above example of everyday reasoning was a poor choice.

All students were masters on the Mastery Test, but one item caused

some confusion: item 9 which states that you can believe everything

you see. It was decided that it should be discussed in greater detail

at the beginning of the next lesson.



LIST OF PROPOSITIONS

How would you prove each of the following statements to a friend?

1. There are more than 5 million people living in New York City.

2. There is a rose bush in Mrs. Gornowicz's yard.

3. The Amazon is the widest river in the world.

4. The earth is shaped like a sphere.

5. There really is a place called Japan.

6. 10,001 is a prime number.

7. The correct spelling is 'Iparallel."

8. If you add two odd integers, the sum is even.

Gasoline burns.

10. Aristotle lived in Greece more than 2000 years ago.
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EXAMPLES OF AUTHORITY

Which of the following are examples of using appropriate authorities?

1. George was reading his mother's high school history book, the
one she had used in high school. It said that there are 48 states
in the United States. George told his teacher that there are 48
states because the history book said so.

2. Jim claims that men have flown to Mars. He shows the class a book
which was written by a man who believes in flying saucers. The

book states that 3 men and a woman flew to Mars on a flying saucer
to visit the little green people who lived there.

3. Howard says that the President of the United States is a communist.
To prove it he shows the class a book written by a man who calls

many people communists.

4. Jeannette says that the United States declared its independence in

1776. To prove it she got out her history book.

5. The Rhinos were having a war with the Hippos. Harvey asked a

Hippo who started the war.

6. Horace did not believe that Oscar was 7 years old. To prove it,

they went into the house and asked Oscar's mother.
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MASTERY TEST

How would you prove each of the following statements?

1. At this very minute it is snowing outside.

2. George Washington was the first president of the USA.

3. If you add an odd integer to an even integer, the sum is odd.

4. The Chicago Cubs lost two= games yesterday.

5. she earth is about 93 million miles from the sun.

'Mich of the following are examples of using appropriate authority?

6. Sidney could not add 4 1/3 + 5 11/16. So he asked a drunk old

monkey how to do it.

7. John looked up the correct spelling of "dog" in the dictionary.

8. Stella's father cannot read. She asked him who would make the beat:

president of the USA.

9. One thing is certain: you can believe everything you see. T F

10. Give an example to support your answer to problem 9.
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SEEING IS BELIEVING?

Emirp was just getting into his car, a 1933 Monkeymobile, when Sidney

and Harvey arrived.

"No lesson today. My dog has been missing for a week. The b_rds tell

me that he is in Rhinoville. I'm afraid that the Rhinos have dog-napped

him. So I must go there and rescue him."

"Let us go with you. You might need help," said Sidney.

"0. K. But it may be a dangerous trip." They all jumped into the

car,, and down the road they flew.

"Mr. Emirp, how do you know when something is really true?" asked Harvey.
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"Well, it depends on what you are talking about," said Emirp.

"Ellie Elephant says that the earth is round like a ball. But it looks

flat to me."

"There are many things," said Emirp, "which we cannot verify by our-

selves. We must accept the word of some authority, some person who is an

expert."

Sidney said, "I know the earth is round because I heard the astronauts

on T.V. They are authorities, because they have seen the earth from space."

"Right. Also, how do you know that New York City is really there if

you haven't seen it, or that George Monkeyton was the first King of Monkey-

ville?" asked Emirp.

"The Atlas shows New York City on the map, so I believe it really exists,"

said Harvey.

"And our history book says that George Monkeyton was the first King of

Monkeyville. It is an authority, so I believe it," answered Sidney.



"So you see, there are many authorities to tell what is true."

A large tree was growing beside the road. Its limbs stretched out

over the road. A huge snake was coiled around a limb.

"Look!" said Sidney. "There's a snake hanging from that tree. It

must be hungry."

As they drove under the tree, Sidney ducked and closed his eyes.

But Harvey was not afraid. He grabbed a baseball bat and clobbered the

snake.

313



314
"That's another way we have of knowing things," said Emirp. "We

perceive things with our five senses: hearing, seeing, smelling, tasting,

and touching."

"Righto. That's why we knew that snake was there. Seeing is

believing," said Sidney.

"We do know that many things are true because of our senses," said

Emirp.

"But our eyes can play tricks on us. " -`He pulled a sheet of paper out

of the glove box.

"Look at these," he said.

1. Which line is longest,
AB ok CD t

3. How many cubes are in

this figure?

2, Which of the four lines below the
rectangle is the continuation of X?

Which line segment is longest,
AB or BC ?



5. How many curved lines are used

in making this picture?

7. Are the heavy lines straight or

are they curved?

I\\\ \\\

1 , A

315

6. Are the line segments M and N
always the same distance apart?

A

8. Which line segment. is the
longest, AB or CD ?
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"You are right," said Sid. "You cannot believe everything you see."

The road ended. The jungle was so dense that a car could not go

between the trees and brush. "We must walk," said Emirp.

Thus far our friends have concluded that there are two ways to verify

statements: by authority and by our senses.

"Is there any other way we can prove things?" asked Harvey:

"Yes," said Emirp, "by reasoning." Just then a lion jumped in front

of them. "For example," said Emirp calmly. "See this lion. I know two

things about lions, and therefore I can tell you what is about to happen.

1. Animals with sharp teeth can hurt you.

2. This lion has sharp teeth.

Therefore, I know that this lion can hurt us."



Just as the lion jumped at Sidney, Emirp reached into his coat and

pulled out a spray can. Quick as a wink he sprayed a mist in the lions

face.

"Yeowee," howled the lion- He ran crying through the jungle.

"What is in that can?" asked Sid.

"Tear gas for lions," answered Emirp. "I always carry it just in

case of an emergency."

317
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They cOntiimed through the jungle.

"Quiet. We are near Rhinoville. If they hear us, it might be the

end of us."

They hid behind some trees and looked down at the village. "Look!"

whispered.Harv. "There's Dog."

Emirp took a 'whistle out of his coat." This is a whistle that a dog

can hear, but the Rhinos cannot hear, I'll blow it and Dog will come to us."

He blew the whistle. Harvey and Sidney could not hear a t.hing, but Dog's

ears perked up. He came running, towards Emirp.

"Quick, come with us!" said Emirp Lo Dog. "We have come to rescue you."

-4
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"Rescue me?" said Dog. "Didn't you get my note?"

"What note?"

"The one I left on the table before I left."

"Oh. I'll bet I threw it away without realizing it was a note

from you."

"Well, I am here to visit my cousin, Doggie Dog. We are having a

great time, and the Rhinos are so nice."

They walked down into the village. The Rhinos asked them to stay for

supper, and they all had a good time.

And so Harvey and Sidney learned that there are three ways to prove

that something is true: by authority, by our senses, and by reasoning.



LESSON TEN

THEOREM 6: GIVEN ANY SET OF PRIME

NUMBERS f2,3,5,...1, THERE IS ALWAYS ANOTHER PRIME.

320

The purpose of this lesson is to prove this theorem.

BEHAVIORAL OBJECTIVE:

1. The student can write the-proof of theorem 6.

MATERIALS:

1. Story on Prime Numbers

2. List of prime numbers less than 60,000

3. Two sheets with incorrect proofs

4. Practice sheet

PROCEDURE:

Pass out the computer print out of all prime numbers less than

60,000. "Here is a list of prime numbers' less than 60,000.. They were

formed by one of the University of Wisconsin computers. It took 14

seconds to do. How long would it take a man to find all of the prime's

less than 60,000?"

"Suppose we started the computer and asied it to find prime numbers.

If we didn't stop haw long would it keep going?" The answer is for-

ever, of course, since there are infinitely many primes.

"Today we are going to prove that there are infinitely many primes.

We shall show that for any set of primes, there is always another one.

For example, suppose someone said that f2A was the set of all prime
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numbers. Even if we didn't know any more primes, we can show that

there has to be another prime."

Then proceed to show how to get another prime. Write (and explain):

(2 x 3) + 1 is a whole number

2 i'l and 21(2 x 3) so 2 (2 x 3+ 1)

3 if 1 and 31(2 x 3) so 3' (2 x 3+ 1)

(because of theorem 4)

Since some prime number must divide (2 x 3) + 1, there is another

prime besides 2 and 3.

"We know, of course, that 7 is prime. But even if we did not know

this, our reasoning would tell us that there is some prime besides 2

and 3."

Do the same for [2,3,5) , asking the students for each step.

(2 x 3 x 5) + 1 is a whole number

21(2 x 3 x 5) and 4 1 so 211 (2 x 3 x 5 + 1)

31(2 x 3 x 5) and 3j' 1 so 3t (2 x 3 x 5 + 1)

51(2 x 3 x 5) and 5 t 1 so 5 1 (2 x 3 x 5+ 1)

Some prime must divide it, so there is another prime.

We know 31 is prime, but even if we didn't, we know there is some

prime which divides it By this time the students should see the

procedure. re you think it necessary, it can be repeated for the set

(2,3,5,7j , and even [2,3,5,7,111 if necessary.

Now consider the set [2,3,5,7,11,131 , and ask, "How can we show

that there has to be another prime?" Have the students supply each

step. This time, number the steps, and give a reason for each statement.

When this proof is complete, the generil theorem will follow by replacing
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13 by P. Explain the meaning of the three dots.

1. (2 x 3 x x 13) + 1 is 1. fact

a whole number

Ask, "Will any of the numbers in the set divide (2 x 3 x x 13) + 1?"

Point out that Theorem 4 tells us that none will divide it." Instead

of writing it out for each of the numbers in the set, we will just write:

2. None of the numbers in the 2. Theorem 4

set will divide it.

3. .% There is another prime 3. Axiom 1

number

Then evaluate ( 2 x 3 x x 13) + 1 = 30,011. This number was

factored by the desk computer and the students have it written on the

list of primes. EXplain that this procedure always gives us a prime,

but as in this case the number itself is not prime. 30,031 = 59 x 509.

Present the proof for the set [2,3, ..., 131 . Explain that the

three dots represent all the numbers between 3 and P. For example, if

P = 59,999 (the, largest prime on the print out), then the three dots

would represent over 100 pages of prime numbers.

Ask a student to came to the board and by making appropriate changes,

write a correct proof for thL. general theorem. Merely replace P by 13.

Distribute a $heet with theorem 6 on it and ask the students to

copy the proof. Then pass out sheet #1. Then quiz. Sheet # 2.

Circulate about the room correcting any errors.

Point out that the. plan of the proof is to construct a number which

is not divisible by any of the primes in the set. Then administer the

mastery test.

afx
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JOURNAL ON LESSON TEN

Tuesday, May 6, 196 9

The lesson went almost precisely as planned. When shown the lit

of all the prime numbers less than 60,000, many comments were made.

After the first example with (2,3.), the students all appeared to

understand the procedure, for they were all anxious to volunteer to do

it for the other examples given, namely forliPtl2,3,i1 .

The period ended after the students had copied the proof once.

ANALYSIS: A good presentation. We decided to continue with the lesson

as it was originally planned.

Wednesday, May 7, 1969

The teacher began by reviewing the proof of Theorem 6 on the board.

The rest of the lesson went as planned.

ANALYSIS: All the students were able to prove the theorem on the

Mastery Test.

With two days remaining, it was decided that Thursday would be

spent in a general review of the unit. The students wanted to spend

the entire period having a party. Since the class period follows their

lunch hour, a compromise was reached: After eating their lunches, the



students would come

class time would be
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to class early for cupcakes and kool-aid. Enough

allotted for finishing the snacks.
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PRACTICE SHEET

GIVEN ANY SET OF PRIME NUMBERS {2, 3,

NUMBER.

STATEMENT

-2 p}, THERE IS ANOTHER PRIME

REASON

1. 1.

2. 2.

3. 3.
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SHEET # 1

THEOREM 6: GIVEN ANY SET OF PRIME NUMBERS {2,

ANOTHER PRIME.

STATEMENT

3, P}, THERE IS

REASON

1. (2 x 3 x P) + 1

is a whole number

1. Fact

2. None of the numbers in
the set will divide it.

2. Axiom 1

3. There must be another prime 3. Theorem 4

THEOREM 6: GIVEN ANY SET OF PRIME NUMBERS {2, 3, P}, THERE IS

ANOTHER PRIME.

STATEMENT REASON

1. (2 + 3 + + P) + 1

is a whole number

1. Fact

2. None of the numbers in
the set will divide it.

2. Axiom 1

3. There nust another prime 3. Theorem 4
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SHEET # 2

THEOREM 6: GIVEN ANY SET OF PRIME NUMBERS {2, 3, 2 P}, THERE IS

ANOTHER PRIME NUMBER.

STATEMENT REASON

1. (2 x 3 x x 1) + P is

a whole number
1. Fact

2. None of the numbers in
the set will divide it

2. Axiom 1

3. There is another prime 3. Theorem 1

THEOREM 6: GIVEN ANY SET OF PRIME NUMBERS {2, 3, , P}, THERE IS

ANOTHER PRIME NUMBER.

STATEMENT REASON

1. 1. Fact

2. 2. Theo&ri 4

3. 3. Axiom 1



LESSON TEN MASTERY TEST

1. Given any set of prime numbers {2, 3, 5,

always another prime number.

P}, there is

STATEMENT REASON

2. State Axiom 1:

Replace the dots by the numbers and signs they represent:

3 . 1 + 2 + 3 +--- + 8 =

4. (evens) 6 + 8 + 10 + + 16 =

5. (odds) 1+ 3 + 5 + + 11 =

6. (primes) 2 + 3 + 5 + + 13 =

7. (primes) 2 x 3 x 5 x x 17 =



Harvey and Sidney knocked loudly on the door, but Mr.

EMIRP did riot answer. "Gosh," said Harvey, "I wonder

where he could be?"

Hearing this, a bird flew down out of a tree and

landed on Harvey's trunk. "Excuse me," said the bird

in a squeaky voice, "but Mr. EMIRP has gone fishing

today."

"That's too bad. We were supposed to study math

with him today. Guess we'll have to forget it for

today," Sidney said happily, for he was not in the

mood for studying.

"N3nsense," said the bird, "I'll take you to

EMIRP."

And so the boys followed the bird through the

jungle. They soon found EMIRP sitting in the shade

of a tree, fast asleep. He had the fishing line tied
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to the end of his trunk. If he got a bite, the

line would tug his trunk and he would wake up to

haul in his catch. Sidney sneaked behind EMIRP

and gave the fishing line a big tug. Thinking he

had a fish, EMIRP jumped to his feet. fish, a

fish. I've caught a fish," he shouted as he reeled

in the line by wrapping it around his trunk. You

can imagine his disappointment when he discovered

that there was no fish on the line.

As he sadly turned around he noticed Harvey

and Sidney. "Golly," said EMIRP, "I really had a

whopper, but he was so strong that he broke the

line."

Sidney grinned from ear to ear, but Harvey

did not think it was very funny.

NIS

(
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"We have come fot our math lesson," said Harvey.

"Good:," said EMIRP as he untangled the fishing

line from his trunk. "Do you krzaw what a prime num-

ber is?"

"Is it something like prime ribs?" asked

Harvey.

"No,," chuckled Mr. EMIRP, "A prime number is

any whole number which has exactly two divisors,

1 and itself."

"Oh. Then 11 is a prime number," said'Sidney.

"That's right," said EMIRP. He had a large bag

of peanuts, and he gave one to Sidney for saying some-

thing intelligent.

"And 5,.7, 11, and 13 are primes," shouted Harvey,

hoping to get 4 peanuts. EMIRP tossed him one. "2

is a factor of 24, so 24 is an un-prime," said Sidney.

"Well," 'Mr. EMIRP quickly added, "any whole number

which his more than two divisors is called a composite

number." "Oh. Then 6, 10, 401and 52 are composite,"

said Sidney.

"All even numbers are composite," said Harvey

with a big smile, hoping to get another peanut.

EMIRP frowned. Harvey thought. Sidney thought

and thought. "Not quite," said Sidney, "there is

one even number which is not a composite number."



Harvey thought. And thought. But he could not

find the number. Finally Sidney said, "2 is prime

and 2 is even."

EMIRP gave him another peanut.

Harverwas embarrassed. Then it was Sidney's

turn to appear stupid.

"All odd numbers are prime," he said without

thinking, hoping to get still another peanut.

"Not so," smiled Harvey. "15 = 3 x 5."

? ?
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It was Sidney's turn to be embarrassed. "There

must be a lot of prime rumbers," said Sidney, try-

ing to change the subject. "I wonder how many there

are?" Do you u know?



"That's an excellent question," said EMIRP.

He then showed the boys how to find, all of the

prime numbers less than 100. They discovered 25

prime numbers less than 100.

"I have invented a game. It is called PRIME,"

said the teacher. He explained how to play, and

for the next three hours they played PRIME. "This

is more fun than a barrel of monkeys," said Harvey.

They played 31 games. Harvey won 11, Sidney won 13,

and EMIRP won 7.

333
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"Now," said the wise old elephant, "we must get

on to the main topic for today."

"What is that?" asked Sidney.

"The fact that every counting number greater

than 1 is divisible by at least one prime number."

"Holy hay!" said Harvey.

"Buckets of bananas!" exclaimed Sidney. "Is

that really true?"

"Well, try it Can you think of a prime number

which divides 20?" asked EMIRP.

"Easy peasy," said Harvey, "2 and 5."

"Good. For each of the following numbers, give

at least one prime which divides it."

1. 15 11. 48

2. 16 12. 96

3. 21 13. 33

4. 7 14. 41

5. 23 15. 45

6. 17 16. 51

7. 28 17. 37

8. 13 18. 82

9. 25 19. 99

10. 24 20. 75



Just then the bird returned. "Sidney. Have you for-

gotten. Today is Bananaday. All the monkeys are

waiting for you and Harvey to figure out how many

bananas they get.

"Blue bananas!" said Sidney. Ve were having

so much fun with EMIRP that I forgot."

And off they ran.

Than night Sidney ate 37 bananas, Harvey ate

41 bales of hay, and Mr. EMIRP ate 79 bales of hay.

He would have eaten 80, but 80 is not prime.



LESSON ELEVEN

SUMMARY

The purpose of this final lesson is to review the unit and to

summarize what has been done. The lesson includes a sb.Jrt discussion

of mathematical proof.

BEHAVIORAL OBJECTIVES:

1. The student can write the proofs of all six theorems.

2. Given a list of statements, the student can name a

reason for each statement.

MATERIALS:

1. Final two episodes of the story

2. Three sheets with incorrect proofs

3. Three practice sheets for writing proofs

4. Practice sheets on prerequisites

5. Practice sheets on reasons

PROCEDURE: Use Theorem 1 to explain the axiomatic nature of

mathematics. This unit is the first contact with formal proof

that the students have had, hence it is not expected that they

have a complete or mature understanding of proof. What is intended

there is to expose the students to the basic ideas involved in an

axiomatic system and to use the theorems in the unit to illustrate

it.

336
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Begin with an explanation of definitions, Then explain that

in order to prove some results, we must accept a few statements

without proof. These are usually properties which are very

obvious. For example, the substitution principle, the distributive

law, and Axiom 1 were all accepted as being obviously true. In

order to prove other results, we may use the following:

1. definitions

2. laws, axioms, or principles which are accepted to be

true without proof

3. previously proven theorems

Point out that in proving Theorem 1 we used a definition,

the distributive law, and the substitution principle. Do the

same for each of the six theorems.

Then draw the following diagram on the board:

Theorem 6

T

Theorem 4

[Theorem 2 Theorem 3

Explain that we actually proved Theorem 2 in order to prove Theorem 4,

and that we proved Theorem 4 in order to prove Theorem 6.
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After this discussion, distribute sheets #1, #2 and 13. Than

the practice sheets, and finally the sheet with Prerequisites.

Circulate about the room and correct any errors. The stories

may be used for homework.

Following this lesson, the posttest will be administered.
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JOURNAL ON 'SUMMARY

Wednesday, May 7, 1969

After the Lesson 10 Maitery Test was administered, the teacher

discussed the nature of mathematical proof and reviewed the unit.

The diagram of the proofs appeared to be helpful to the students.

The story on Theorem 6 was given for homework.

Thursday, May 8, 1969

The teacher passed out all of the drill and practice sheets

and gave individual help to those who needed it. The divisibility

items were forgotten by three students. The story on Lake Mills

was given for homework.

ANALYSIS: The exercises seemed to be effective.

Friday, May 9, 1969

The posttest was administered to both the control and

experimental group in the same manner as the pretest. After

the students had finished the test, the investigator interviewed each

student individually in an effort to determine how well they

understood the proofs. Each student was asked what plan he

would use to prove each of the theorems. The investigator's

subjective observations were as follows:

1. Nine of the ten students appeared to understand

the proofs of the first three theorems. One student

could not explain why certain steps were taken, nor

why.
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2. Seven of the ten students appeared to understand the

proofs of Theorems 4 and 5. Three students were

unable to explain why certain steps were taken in

the proofs.

3. Eight of the ten students appeared to understand

the proof of Theorem 6.
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NAME THE REASON FOR EACH. OF THE FOLLOWING STATEMENTS:

Statements Reasons

1. IF X = 6, then A+XpA+6 1

2. AB + AX = A(B + X) 2.

3. If an assumption leads to a
false statement, then the
assumption is false.

3.

4. Every whole number greater than 4.

1 is divisible by some prime
number.

5. IF NIA, then there is some
whole number K such that
A = NK

5.

6. MI(C - D) and MID, then MIC 6.

7. (2 x 3 x 7) + 5 is a whole 7.

number

8. AB + AC is divisible by A 8.

9. 3 will not divide 9.

(2 x 3 x 5 x 7) + 2

10. IF I= YZ, THEN Y IX 10.
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SHEET #1

IF NIA AND NIB, THEN NI (A + B) .

STATEMENT REASON

1. A = NP 1. AXIOM 1

B = NQ

(A + B) = NP + NQ 2. SUBSTITUTION

3. (A + B) = N(A + Q) 3. DEFINITION OF DIVIDES

4. N (A + B) 4. DISTRIBUTIVE LAW

IF NfA AND NIB, THEN Nt (A + B)

STATEMENT REASON

1. NI (A + B) 1. GIVEN

2. NIB 2. THEOREM 2

3. NIA 3. THEOREM 1

4. NiA 4. ASSUME

5. + B) 5. LAW OF CONSTRICTION
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SHEET #2

GIVEN ANY SET OF PRIME NUMBERS {2, 3, 5, , P},

THERE IS ALWAYS ANOTHER PRIME NUMBER.

STATEMENT REASON

1. (2 x 3 x 5 x x P) + 1 IS A 1. FACT
WHOLE NUMBER

2. NONE OF THE NUMBERS IN THE SET 2. THEOREM 5
WILL DIVIDE (2 x 3 x 5 x x P) + 1

3. ... THERE MUST BE ANOTHER PRIME NUMBER 3. LAW OF CONTRADICTION

IF NIA, NIB, AND N IC, THEN N I (A + B + C) .

STATEMENT REASON

1. A =NC 1. DEFINITION OF PRIME
B = ND
C = NE

2 . (A4- B + C) = NC + ND + NE 2. SUBSTITUTION

3 . (A + B + C) = N(A + B + C) 3. AXIOM 1

4. . N 1(A + B + C) 4. DEFINITION OF DIVIDES
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SHEET #3

IF NiA AND NIB, THEN Ni(A - B).

STRAWBERRY REASON

1. NI(A - B) I. ASSUME

2. NIB 2. GIVEN

3. NIA 3. THEOREM 1

4. N4A 4. GIVEN

5. :. N4 (A - B) 5. LAW OF CONTRADICTION

IF NIA AND NIB, THEN NI(A - B).

STATEMENT RAISIN

N = AP I. DEFINITION OF DIVIDES

N = BQ

2. (A.- B) = NP NQ 2. SUBSTITUTION

3. (A - B) = N(A - B) 3. DISTRIBUTIVE LAW

4. :. NI (A + B) 4. DEFINITION OF DIVIDES
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PRACTICE SHEET

If NI A and NI B, then NI_ - B) .

STATMENT REASON

Given any set of prime numbers { 2, 3, , P }, there is another prime.

STATEMENT. REASON



PRACTICE SHEET

If NIA and NIB, then NI (A + B) .

STATEMENT REASON

If NtA and NIB, then tif (A - B).

STATEMENT REASON
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STATEMENT

PRACTICE SHEET

If NIA, NIB, and NIC, then NI (A + B + C).

'REASON

If NIA and NIB, then Nf (A. + B).

STATEMENT REASON
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REVIEW OF PREREQUISITES

Apply the distributive law to the following expressions:

1. (9 x 8) + (9 x 53) =

2. AQ + AR =

3. 6t + 6K =

4. AS + AT =

5. MB + MN =

6. 89B + 89V =

7. If an assumption leads to a contradiction, what can you conclude?

8. Circle the prime numbers in the following list:

22 33 23 57 78 13 17 99

9. 4 x 2 = 8 which is even, 8 x 4 = 32 which is even, and 6 x 4 = 24
which is even. This proves that if you multiply an even number by
an even number the product is always another even number.
TRUE FALSE

Give one division fact for each of the following:

10. 45 = 5 x 9 13. (A + B) = rt

11. W = .11( 14. WE = 6

12. R = FG 15. (N- X) = 3K

16. If M = 6, the M + 11 =

17. If P = 45, then P - 39 =

18. If14 = 7, then 1 + 2 + 3 + +M=

19. If T = 3, T
2
+ 70 =

20. 1 x 2 x 3 x x 6 =

Write an equation to illustrate each of the following:

21. 6124

22. T1R

23. 3I(A + B)

24. DI(V P)

25. Sidney knows that T = 6. He assumes that k + p = 17 and this
leads him to conclude that T 0 6. What can he conclude?
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EMIRP was all excited. He had just received a

package from his Aunt Hattie. "Wow:" said EMIRP as

he opened it. Inside the package was an umbrella,

a pair of slippers, and a polka dot coat. He had

no sooner put them on when he heard Harvey calling,

"14r. EMIRP. EMIRP."

EMIRP stepped outside. He saw Sidney and Harvey

running up the path to his house. "A terrible thing

has happened. King Herman was on an airplane headed

for Biami .Beach. The plane has been sky-jacked and

flown to HUBA," said Harvey.

"That's O.K. They always let the passengers

go."

"But that's just it," replied Sidney. "They have

arrested Herman as a spy and will not let him go."
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"Let's go!" said EMIRP, and they climbed into

his 1933 Monkeymobile.

"Now," said EMIRP as they sped along," do you

remember our last theorem?"

"Yes," said Harvey. If NIA and NIB, then

+ B)."

"Oh yeah," added Sidney. "For example,

541 and 5155, so 5166."

"Very good," remarked Emirp as the car

swerved off the road. BUMPETY-BUMP! With his superb

driving skill EMIRP guided the car back onto the road.

"How many primes are there?" asked EMIRP.

"I think there are just two," said Sidney. "2 and 3."

He had forgotten the lesson on prime numbers.

"Consider the number (2 x 3) + 1. 2 1c2 x 3)

but 241. And 31(2 x 3) but 341," said EMIRP.
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Then Harvey said, "By our last theorem, that

means that neither 2 or 3 will divide (2 x 3) + 1."

"Correct," said EMIRP. A flock of geese was

in the road. Emirp honked the horn and blasted straight

ahead. The geese flew. Feathers flew. Eggs flew.

"Hey!" said Sidney. "There are 3 eggs in the car."

"Wunnerful, wunnerful," said EMIRP.

When they got to the airport, they quickly got into

a plane. "We're off to HUBA," said EMIRP as the plane

left the ground.

"I've changed my mind," said Sidney. "I think the

set of prime numbers is 2, 3, 5 ."

"Consider the number (2 x 3 x 5) + 1.

21(2 x 3 x 5) but 211

31(2 x 3 x 5) but 341

51(2 x 3 x 5) but 511.

So by our theorem, 2, 3, and 5 will not divide the sum

(2 x 3 x 5) + 1. But some prime number must divide it.



So there is a prime number other than 2, 3, and 5."

"Look!" shouted Harvey. "There's the island of

HUBA."
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EMIRP landed the plane. A lion appeared.

"What do you want?" he asked.

"We are good and we are brave and we have come

to rescue Herman ," replied EMIRP.

"I am not supposed to let anyone go to the prison.

But if you will give me that gorgeous umbrella, I will

let you go."

"0. K." said EMIRP.

The lion held the umbrella in his tail and growled,

"Now I am the grandest lion in HUBA."

"This way to the prison," said Sidney.

14+



Harvey said, "I think there are an infinite number

of primes. Suppose you thought you had ell the primes,

say,

2, 3, 5, . . P , where P was the largest

prime. ConsiderN= ( 2x3x5x. . .xP) + 1.

As before 21(2 x 3 x x P) but 2t1 so 2+N. In

the same way, 3, 5, . . P will not divide N. But

some prime number must divide N. This means there is

another prime besides 2, 3, 5, . . ., and P."

Nunnerful, wunnerful," said EMIRP.

When they got to the prison, another lion appeared.

"What do you want?" he asked.

"We are good and we are brave and we have come to

rescue Herman ."

"Well, I'm not supposed to let anyone in this

building, but if you will give me that polka dot

coat, I will."
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"It's a deal," said EMIRP. The

lion put the coat on and growled, "Now

I am the grandest lion in HUBA."

"Whew! Golly! Gosh!" said Sidney.

"Who would have guessed that there is

an infinite number of primes?"

"I would have," said EMIRP as they

soon found Herman.

"Get me out of here," said the King.

Just then a third lion, appeared. "What

do ybu want?" he asked.

"We are good and we are . . . ." The lion interrupted

him. "I know, I know," said the lion impatiently.



"If you will give me those beautiful slippers, I will

give you the key to the cell," pleaded the lion.

"It's a bargain," said EMIRP.

As the lion walked away he roared, "Now I am the

grandest lion in HUBA."

They quftkly let King Herman out of jail. Just

as they were about to climb into the airplane, they

heard a terrible noise.

The three lion had met and were arguing over who was

the grandest lion in HUBA.

"Quick," said EMIRP, "Get the jars out of the

airplane!"

The lions put the umbrella, the-coat and the

slippers down. They grabbed each others tails and



ran around a tree. Well, you probably know the rest

of the story. EMIRP gothis clothes back, they all

flew safely back to Monkeyville, and they had pancakes

for supper.

Sidney ate' 31, King Herman ate 37, Harvey ate 101,

and Mr. ENIRP ate 9973 pancakes because he was so

hungry.
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LAKE MILLS OR BUST

Mr. Emirp, Harvey, and Sidney were about to begin another math

lesson when the mailmonkey came down the road. "Letter for Emirp,"

he said as he handed Emirp a letter.

Dear Mr. Emirp,

I am teaching a unit on proof to ten sixth-grade

students at Lake Mills, Wisconsin.They are having some

difficulty learning to prove theorems.

Yom are the greatest teacher in the world. Could

you come to Lake Mills and help me teach these students

how to prove theorems:

Mrs. Gornowicz'

It was decided that all three of our friends would travel across

the ocean to Wisconsin to help Mrs. Gornovicz. The next morning

they set sail for America. Half way across the Atlantic Ocean a
I

huge sea monster stopped the boat.

./\
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"Who dares to pass through my kingdom?" asked the monster.

"I am Emirp the Great, and this is Harvey and Sidney. We are

going to Lake Mills to help Mrs. Gornowicz teach."

"Not THE Mrs, Gornowicz?"-asked the monster.

"Yes," replied Emirp.

"Well, there is a theorem that I have been trying to prove for

the last 200 years. I just can't do it. If you can prove this

theorem, I will let you pass. Otherwise I shall eat you for dinner."

If NIA and NIB, then NI(A-B).

STATEMENT

1.

3

4.

REASON.

1.

2.

3.

4.

"That's easy," said Emirp. He showed the monster how to prove

it, and our heroes continued on their way. Soon a terrible storm arose.

Huge waves bashed the boat. Suddenly a wave hurled the boat through

the air and our three friends fell into the ocean. Just then a

gigantic whale swallowed our friends'.
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"Goshjitis dark," said Sidney. "Where are we?"

"I can tell by all this blubber that we are in the belly of a

whale," said Emirp.

"Shucks," said Harvey, never get to Lake Mills now."

"Do not despair," said Emirp calmly. "I'll think of something."

Sidney began to cry. "We've let Mrs. Gornowicz down."

"Not yet," said Emirp. "If I remember correctly there should be

a jet liner flying to New York, and it should be directly over our

heads in about two minutes. Let's find the whale's water spout and

make him sneeze. He will blow us up into the air. The plane should

be flying at 24,000 feet. If we get sneezed that high, maybe we can

land on the wings of the jet and get a free ride to New York.

"But how will we make him sneeze?" asked Harvey.



"I have a small can of sneezing powder in my hip pocket," answered 360

Emirp.

Emirp waited until the precise moment, then spread the sneezing

powder in the whale's mouth. He sneezed and choked and sent a spray

of water into the air. Our three adventurers flew exactly 24,002 feet

into the air, and they landed on the wings of the jet. It landed

safely in New York.

"Emirp strikes again," said Sidney.

They quickly caught a plane for Chicago. Up in the air a man

pointed a gun' at` a stewardess and shouted, "Tell the pilot to fly to

Cuba."

"Oh, you can't do that," said Emirp.

"Why not?" asked the sky-jacker.

"I am Einirp the Great and we are going to Lake Mills to help

Mrs. Gornowicz."



"Not THE Mrs. Gornowicz?" said the man.

"Yes," said Emirp.

"Well, if you can prove this theorem I will let this plane go

to Chicago."

Ar
If NtA and NIB, then N1 (A+ B).

STATEMENT REASON

1. 1.

2. 2.

3, 3.

4. 4.

Sidney proved the theorem, and the plane landed safely in Chicago.

From there they took a bus to Lake Mills-.

"Look!" shouted Sidney. "There's the school."

But before they could go any further, the Rock Lake Monster

stopped them.

"Yum, yum," he said. "Elephant and monkey meat. You'll make a

fine supper. I'm tired of eating fish and children."
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you."

room.

"You can't eat us. We have to help Mrs. Gornowicz," said Emirp.

"Not THE Mrs. Gornowicz," said the monster.

"Yes," said Emirp.

"Well, in that case, if you can prove this theorem I will spare

Given my set of primes {2, 3, 5, ..., 0, there is

always another prime.

STATEMENT REASON

2. 2.

3.;
Sidney proved the theorem, and our friends ran into the school

"Mr. Emirp!" shouted Mrs. Gornowicz.

"Mrs. Gornowicz!" shouted Emirp.

"/ have come to help you."

"Oh dear," said Mrs. Gornowicz. "This is the last day of class

and the bell will ring any minute."

Ring -g-g.

"Elephant feathers:" said Emirp. "This calls for a Diet Rite Cola."
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The pages of this Appendix contain tables which summarize the

results of the mastery tests used in the experiment. "Item criterion"

is the ratio of the number of items correct to the number of total

items. In Table A, for example, the item criterion of 9/10 has 10

students reaching that criterion. This means that 10 students answered

9 of 10 items correctly. The same table indicate that 9 students

answered 10 of 10 items correctly. An asterisk (*) indicates where

criterion was not reached.

I. DISTRIBUTIVE LAW MASTERY TEST

TABLE A

Identifying instances of the distributive law

Item Criterion No. Reaching Criterion

10/10 8

9/10 10

TABLE B

Applying the distributive law

Item Criterion No. Reaching Criterion

10/10

9/10

9

10



II. DIVISIBILITY MASTERY TEST

TABLE C

Stating divisibility facts

Item Criterion No. Reaching Criterion

10/10 4

9/10 6

8/10 7*

6/10 8

3/10 10

*(80/80) criterion not mt.

TABLED

Writing eqUations

Item Criterion No. Reaching Criterion

10/10 8

9/10 9

8/10 10

III. SUBSTITUTION MASTERY TEST

TABLE E

Substitution

Item Criterion

10/10

No. Reaching Criterion

10.
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IV. MASTERY TEST FOR FIRST THREE PREREQUISITES

TABLE F

Identifying instances of distributive law

Item Criterion No. Reaching Criterion

5/5 7

4/5

TABLE G

Applying distiibutive law

10

Item Criterion No. Reaching Criterion

5/5 9

0/5

TABLE H

Substitution

Item Criterion No. Reaching Criterion

5/5 8

4/5 10

TABLE I

Stating divisibility facts

Item Criterion No. Reaching Criterion

5/5 10

367
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TABLE J

Writing equations

Item Criterion No. Rea..N.ing Criterion

5/5 8

1/5 9

0/5 10

V. THEOREM 1 MASTERY TEST

All ten students wrote correct proofs.

-TABLE K

Applying Theorem 1

Item Criterion No. Reaching Crif-erion

2/2 10

TABLE L

Giving numerical :-,namples

Item Criterion No. Reaching Criterion

2/2 10
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VI. THEOREM 2 MASTERY TEST

All ten students wrote correct proofs

TABLE M

Applying Theorem 2

Item Criterion No. Reaching Criterion

2/2 10

. TABLE N

Giving numerical examples

Item Criterion

2/2

No. Reaching Criterion

10

.,

VII. MASTERY TEST ON FIRST THREE THEOREMS

All ten students wrote correct proofs for all 3 theorems



VIII. LAW OF CONTRADICTION MASTERY TEST

TABLE 0

Forming opposites

Item Criterion

5/5

No. Reaching Criterion

10

TABLE P

Law of Contradiction

Item Criterion

3/3

2/3

* Criterion not met

No. Reaching Criterion

TABLE Q

Law of the Excluded Middle

Item Criterion
,

6*

10

No. Reaching Criterion

2/2 10
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IX. THEOREM 4 MASTERY TEST

All ten students wrote correct proofs

Item Criteilon

2/2*

TABLE R

Giving numerical examples

No. Reaching Criterion

10

TABLE S

Applying Theorem 4

Item Criterion No. Reaching Criterion

2/2 10

X. MASTERY TEST ON BOTH THEOREM 4 AND THEOREM 5

Nine students wrote correct proofs for Theorem 4

All ten students wrote correct proofs for Theorem 5

XI. MASTERY TEST ON THEOREM 6

All ten students wrote correct proofs

All ten students wrote statements for Axiom 1

TABLET

Interpreting use of 3 dots

Item Criterion

5/5

4/5

No. Reaching Criterion

9

10
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PRETEST-POSTTEST

Name

Apply the distributive law to the following expressions:

1 . (7 x 8) + (7 x 1) = 4. CX + CY =

2. AB + AF = 5. NP + NQ =

3. 5T + 5K =

6. For each of the following numbers, give one prime number which

divides it:

14 15 21 23 49 45 100

7. When you add or multiply two whole numbers, the result is

always another whole number. TRUE FALSE

If T= 8, then 1 + 2 4.3 + . . . +T =

9 . If A = 6 and X = 2, then A + + 3

10: If P-=-7-, then (2 x.3. x .P).+ 4.

11. 2 + 4 + 6+ . . . + 12 =

Write an equation to illustrate each of the following facts:

12. 4124 -
13. AIB

Give one division fact for each of the following equations:

14. 70 = x 35 15. A =BC 16. X = TM

17. If an assumption leads to a contradiction, what can you conclude?

18. Circle the prime numbers in the following list:

2 9 11 27 42 41 49 35 33 81

Write a proof for each of the following theorems (problems 19-24):

19. If NI A and NIB, then NI (A+ B).

STATEMENT REASON
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20. If N{A and N B, then N

STATEMENT REASON

21. If N f A and N I B, then N f (A + B).

STATEMENT REASON



22. Given any set of prime numbers 2, 3, 5, .,

is always another prime number.

STATEMENT REASON

there

23. If, N I A and NI B, then N - B).

STATEMENT REASON

377



24. If N I A and NI B and N I t, then N I (A + B+ C).

STATEMENT REASON

25. 2 + 2 = 4, 6 + 8 = 14, 24 + 6 = 30, 4 + 4 = 8. These examples

prove that the sum of two even whole numbers is always an

even whole number. TRUE FALSE

378
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TABLE U

Summary of Data on the Experimental and Control Groups

390/3'81

I.Q.

0

STEP

READING
STEP

MATHEMATICS
MATH
GRADES

Matched
pair of
students

#

E C E C E C E C

1 135 131 96 90 94 99 A A

2 127 132 82 82 94 94 A A

3 125 130 90 72 88 88 B+

4 119 127 77 68 81 84 A-

5 117 117 49 62 84 84 B4:

6 113 122 82 77 94 99 A-

7 112 118 65 77 84 84 B

8 112 124 55 55 67 76

9 109. 111 86 77 74 88

10 107 101 52 25 79 52 C+ C+

Mean 117.6 121.3 73.4 68.5 83.9 86.2 BF B+

Standard
Deviation 8.93 9.84 16.0262 17.293 8.596 13.482

Henmon-Nelson I.Q. test was administered in the Spring of 1969.
STEP test (from 4A) was administered after the study was completed.
Math grades are for the first semester of the 1968-1969 school year.
"E" stands for Experimental Group.
"C" stands for Control Group.
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